75ed7/3
Jump to navigation
Jump to search
Prime factorization
3 × 52
Step size
19.5583¢
Octave
61\75ed7/3 (1193.06¢)
Twelfth
97\75ed7/3 (1897.15¢)
Consistency limit
3
Distinct consistency limit
3
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |
← 74ed7/3 | 75ed7/3 | 76ed7/3 → |
75 equal divisions of 7/3 (abbreviated 75ed7/3) is a nonoctave tuning system that divides the interval of 7/3 into 75 equal parts of about 19.6 ¢ each. Each step represents a frequency ratio of (7/3)1/75, or the 75th root of 7/3.
Intervals
Steps | Cents | Approximate Ratios |
---|---|---|
0 | 0 | 1/1 |
1 | 19.558 | |
2 | 39.117 | |
3 | 58.675 | |
4 | 78.233 | 22/21 |
5 | 97.791 | |
6 | 117.35 | 15/14, 31/29 |
7 | 136.908 | |
8 | 156.466 | 34/31 |
9 | 176.025 | |
10 | 195.583 | 19/17, 28/25 |
11 | 215.141 | |
12 | 234.699 | |
13 | 254.258 | |
14 | 273.816 | 34/29 |
15 | 293.374 | |
16 | 312.932 | 6/5 |
17 | 332.491 | 23/19 |
18 | 352.049 | 27/22, 38/31 |
19 | 371.607 | 26/21 |
20 | 391.166 | |
21 | 410.724 | 33/26 |
22 | 430.282 | |
23 | 449.84 | 35/27 |
24 | 469.399 | 38/29 |
25 | 488.957 | |
26 | 508.515 | |
27 | 528.074 | |
28 | 547.632 | |
29 | 567.19 | 25/18 |
30 | 586.748 | |
31 | 606.307 | |
32 | 625.865 | |
33 | 645.423 | |
34 | 664.981 | 22/15 |
35 | 684.54 | |
36 | 704.098 | 3/2 |
37 | 723.656 | |
38 | 743.215 | |
39 | 762.773 | 14/9 |
40 | 782.331 | 11/7 |
41 | 801.889 | 35/22 |
42 | 821.448 | 37/23 |
43 | 841.006 | |
44 | 860.564 | |
45 | 880.123 | |
46 | 899.681 | |
47 | 919.239 | |
48 | 938.797 | |
49 | 958.356 | |
50 | 977.914 | |
51 | 997.472 | |
52 | 1017.03 | 9/5 |
53 | 1036.589 | |
54 | 1056.147 | |
55 | 1075.705 | |
56 | 1095.264 | |
57 | 1114.822 | |
58 | 1134.38 | 27/14 |
59 | 1153.938 | 35/18, 37/19 |
60 | 1173.497 | |
61 | 1193.055 | |
62 | 1212.613 | |
63 | 1232.172 | |
64 | 1251.73 | |
65 | 1271.288 | 25/12 |
66 | 1290.846 | |
67 | 1310.405 | |
68 | 1329.963 | |
69 | 1349.521 | 37/17 |
70 | 1369.08 | |
71 | 1388.638 | 29/13 |
72 | 1408.196 | |
73 | 1427.754 | |
74 | 1447.313 | |
75 | 1466.871 | 7/3 |
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -6.94 | -4.80 | +5.67 | -9.04 | +7.81 | -4.80 | -1.28 | -9.60 | +3.58 | -4.96 | +0.87 |
Relative (%) | -35.5 | -24.6 | +29.0 | -46.2 | +39.9 | -24.6 | -6.5 | -49.1 | +18.3 | -25.4 | +4.4 | |
Steps (reduced) |
61 (61) |
97 (22) |
123 (48) |
142 (67) |
159 (9) |
172 (22) |
184 (34) |
194 (44) |
204 (54) |
212 (62) |
220 (70) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -0.80 | +7.81 | +5.72 | -8.22 | +4.17 | +3.01 | +7.20 | -3.37 | -9.60 | +7.65 | +8.93 |
Relative (%) | -4.1 | +39.9 | +29.2 | -42.0 | +21.3 | +15.4 | +36.8 | -17.2 | -49.1 | +39.1 | +45.6 | |
Steps (reduced) |
227 (2) |
234 (9) |
240 (15) |
245 (20) |
251 (26) |
256 (31) |
261 (36) |
265 (40) |
269 (44) |
274 (49) |
278 (53) |