74ed7/3
Jump to navigation
Jump to search
Prime factorization
2 × 37
Step size
19.8226¢
Octave
61\74ed7/3 (1209.18¢)
Twelfth
96\74ed7/3 (1902.97¢) (→48\37ed7/3)
Consistency limit
3
Distinct consistency limit
3
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |
← 73ed7/3 | 74ed7/3 | 75ed7/3 → |
74 equal divisions of 7/3 (abbreviated 74ed7/3) is a nonoctave tuning system that divides the interval of 7/3 into 74 equal parts of about 19.8 ¢ each. Each step represents a frequency ratio of (7/3)1/74, or the 74th root of 7/3.
Intervals
Steps | Cents | Approximate Ratios |
---|---|---|
0 | 0 | 1/1 |
1 | 19.823 | |
2 | 39.645 | |
3 | 59.468 | |
4 | 79.29 | 22/21, 23/22 |
5 | 99.113 | |
6 | 118.935 | 15/14, 31/29 |
7 | 138.758 | |
8 | 158.581 | 23/21, 34/31 |
9 | 178.403 | |
10 | 198.226 | 28/25, 37/33 |
11 | 218.048 | |
12 | 237.871 | 31/27 |
13 | 257.694 | |
14 | 277.516 | 27/23, 34/29 |
15 | 297.339 | |
16 | 317.161 | 6/5 |
17 | 336.984 | |
18 | 356.806 | 27/22 |
19 | 376.629 | |
20 | 396.452 | 34/27 |
21 | 416.274 | |
22 | 436.097 | 9/7 |
23 | 455.919 | |
24 | 475.742 | 29/22 |
25 | 495.564 | |
26 | 515.387 | 31/23, 35/26 |
27 | 535.21 | |
28 | 555.032 | |
29 | 574.855 | |
30 | 594.677 | 31/22, 38/27 |
31 | 614.5 | |
32 | 634.323 | 13/9, 36/25 |
33 | 654.145 | 19/13 |
34 | 673.968 | 31/21, 34/23 |
35 | 693.79 | |
36 | 713.613 | |
37 | 733.435 | 29/19 |
38 | 753.258 | 17/11 |
39 | 773.081 | |
40 | 792.903 | |
41 | 812.726 | |
42 | 832.548 | 21/13, 34/21 |
43 | 852.371 | |
44 | 872.194 | 38/23 |
45 | 892.016 | |
46 | 911.839 | 22/13 |
47 | 931.661 | |
48 | 951.484 | 26/15 |
49 | 971.306 | |
50 | 991.129 | 23/13 |
51 | 1010.952 | 34/19 |
52 | 1030.774 | |
53 | 1050.597 | |
54 | 1070.419 | 13/7 |
55 | 1090.242 | |
56 | 1110.064 | |
57 | 1129.887 | |
58 | 1149.71 | 33/17, 35/18 |
59 | 1169.532 | |
60 | 1189.355 | |
61 | 1209.177 | |
62 | 1229 | |
63 | 1248.823 | |
64 | 1268.645 | 25/12, 27/13 |
65 | 1288.468 | |
66 | 1308.29 | |
67 | 1328.113 | |
68 | 1347.935 | 37/17 |
69 | 1367.758 | |
70 | 1387.581 | 29/13 |
71 | 1407.403 | |
72 | 1427.226 | |
73 | 1447.048 | |
74 | 1466.871 | 7/3 |
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +9.18 | +1.01 | -1.47 | +8.67 | -9.63 | +1.01 | +7.71 | +2.03 | -1.98 | -8.40 | -0.46 |
Relative (%) | +46.3 | +5.1 | -7.4 | +43.7 | -48.6 | +5.1 | +38.9 | +10.2 | -10.0 | -42.4 | -2.3 | |
Steps (reduced) |
61 (61) |
96 (22) |
121 (47) |
141 (67) |
156 (8) |
170 (22) |
182 (34) |
192 (44) |
201 (53) |
209 (61) |
217 (69) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -0.27 | -9.63 | +9.68 | -2.94 | -8.78 | -8.62 | -3.11 | +7.20 | +2.03 | +0.78 | +3.11 |
Relative (%) | -1.4 | -48.6 | +48.8 | -14.8 | -44.3 | -43.5 | -15.7 | +36.3 | +10.2 | +3.9 | +15.7 | |
Steps (reduced) |
224 (2) |
230 (8) |
237 (15) |
242 (20) |
247 (25) |
252 (30) |
257 (35) |
262 (40) |
266 (44) |
270 (48) |
274 (52) |