73ed7/3
Jump to navigation
Jump to search
Prime factorization
73 (prime)
Step size
20.0941¢
Octave
60\73ed7/3 (1205.65¢)
Twelfth
95\73ed7/3 (1908.94¢)
Consistency limit
3
Distinct consistency limit
3
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |
← 72ed7/3 | 73ed7/3 | 74ed7/3 → |
73 equal divisions of 7/3 (abbreviated 73ed7/3) is a nonoctave tuning system that divides the interval of 7/3 into 73 equal parts of about 20.1 ¢ each. Each step represents a frequency ratio of (7/3)1/73, or the 73rd root of 7/3.
Intervals
Steps | Cents | Approximate Ratios |
---|---|---|
0 | 0 | 1/1 |
1 | 20.094 | |
2 | 40.188 | |
3 | 60.282 | 28/27 |
4 | 80.376 | 22/21 |
5 | 100.471 | 35/33 |
6 | 120.565 | 15/14 |
7 | 140.659 | 38/35 |
8 | 160.753 | 34/31 |
9 | 180.847 | 10/9 |
10 | 200.941 | 9/8 |
11 | 221.035 | 25/22 |
12 | 241.129 | 38/33 |
13 | 261.224 | |
14 | 281.318 | 33/28 |
15 | 301.412 | 25/21, 31/26 |
16 | 321.506 | |
17 | 341.6 | |
18 | 361.694 | |
19 | 381.788 | |
20 | 401.882 | 29/23 |
21 | 421.977 | 37/29 |
22 | 442.071 | |
23 | 462.165 | 17/13 |
24 | 482.259 | 33/25 |
25 | 502.353 | |
26 | 522.447 | 23/17, 27/20 |
27 | 542.541 | 26/19 |
28 | 562.635 | |
29 | 582.73 | 7/5 |
30 | 602.824 | |
31 | 622.918 | |
32 | 643.012 | |
33 | 663.106 | 22/15 |
34 | 683.2 | |
35 | 703.294 | 3/2 |
36 | 723.388 | 38/25 |
37 | 743.483 | |
38 | 763.577 | 14/9 |
39 | 783.671 | 11/7 |
40 | 803.765 | 35/22 |
41 | 823.859 | 37/23 |
42 | 843.953 | 31/19 |
43 | 864.047 | 33/20 |
44 | 884.141 | 5/3 |
45 | 904.235 | 27/16 |
46 | 924.33 | 29/17 |
47 | 944.424 | 19/11 |
48 | 964.518 | |
49 | 984.612 | 23/13 |
50 | 1004.706 | 25/14, 34/19 |
51 | 1024.8 | 38/21 |
52 | 1044.894 | |
53 | 1064.988 | |
54 | 1085.083 | 15/8 |
55 | 1105.177 | |
56 | 1125.271 | |
57 | 1145.365 | |
58 | 1165.459 | |
59 | 1185.553 | |
60 | 1205.647 | |
61 | 1225.741 | |
62 | 1245.836 | |
63 | 1265.93 | |
64 | 1286.024 | 21/10 |
65 | 1306.118 | |
66 | 1326.212 | |
67 | 1346.306 | 37/17 |
68 | 1366.4 | 11/5 |
69 | 1386.494 | 29/13 |
70 | 1406.589 | 9/4 |
71 | 1426.683 | |
72 | 1446.777 | |
73 | 1466.871 | 7/3 |
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +5.65 | +6.99 | -8.80 | +6.77 | -7.46 | +6.99 | -3.15 | -6.12 | -7.68 | +8.17 | -1.81 |
Relative (%) | +28.1 | +34.8 | -43.8 | +33.7 | -37.1 | +34.8 | -15.7 | -30.5 | -38.2 | +40.6 | -9.0 | |
Steps (reduced) |
60 (60) |
95 (22) |
119 (46) |
139 (66) |
154 (8) |
168 (22) |
179 (33) |
189 (43) |
198 (52) |
207 (61) |
214 (68) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.27 | -7.46 | -6.34 | +2.50 | -1.99 | -0.47 | +6.39 | -2.03 | -6.12 | -6.28 | -2.86 |
Relative (%) | +1.4 | -37.1 | -31.5 | +12.4 | -9.9 | -2.4 | +31.8 | -10.1 | -30.5 | -31.3 | -14.2 | |
Steps (reduced) |
221 (2) |
227 (8) |
233 (14) |
239 (20) |
244 (25) |
249 (30) |
254 (35) |
258 (39) |
262 (43) |
266 (47) |
270 (51) |