72ed7/3
Jump to navigation
Jump to search
Prime factorization
23 × 32
Step size
20.3732¢
Octave
59\72ed7/3 (1202.02¢)
Twelfth
93\72ed7/3 (1894.71¢) (→31\24ed7/3)
Consistency limit
3
Distinct consistency limit
3
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |
← 71ed7/3 | 72ed7/3 | 73ed7/3 → |
72 equal divisions of 7/3 (abbreviated 72ed7/3) is a nonoctave tuning system that divides the interval of 7/3 into 72 equal parts of about 20.4 ¢ each. Each step represents a frequency ratio of (7/3)1/72, or the 72nd root of 7/3.
Intervals
Steps | Cents | Approximate Ratios |
---|---|---|
0 | 0 | 1/1 |
1 | 20.373 | |
2 | 40.746 | |
3 | 61.12 | 29/28, 30/29 |
4 | 81.493 | |
5 | 101.866 | 17/16, 35/33 |
6 | 122.239 | 15/14 |
7 | 142.612 | 38/35 |
8 | 162.986 | 11/10, 34/31 |
9 | 183.359 | |
10 | 203.732 | |
11 | 224.105 | 25/22, 33/29 |
12 | 244.478 | 15/13, 38/33 |
13 | 264.852 | 7/6 |
14 | 285.225 | 33/28 |
15 | 305.598 | 31/26, 37/31 |
16 | 325.971 | 29/24, 35/29 |
17 | 346.345 | |
18 | 366.718 | 37/30 |
19 | 387.091 | 5/4 |
20 | 407.464 | 19/15, 24/19 |
21 | 427.837 | 23/18, 32/25 |
22 | 448.211 | 22/17 |
23 | 468.584 | 38/29 |
24 | 488.957 | |
25 | 509.33 | |
26 | 529.703 | 19/14, 34/25 |
27 | 550.077 | 11/8 |
28 | 570.45 | |
29 | 590.823 | 31/22 |
30 | 611.196 | 37/26 |
31 | 631.569 | |
32 | 651.943 | 16/11, 35/24 |
33 | 672.316 | 28/19 |
34 | 692.689 | |
35 | 713.062 | |
36 | 733.435 | 26/17, 29/19 |
37 | 753.809 | 17/11 |
38 | 774.182 | 25/16, 36/23 |
39 | 794.555 | 19/12 |
40 | 814.928 | 8/5 |
41 | 835.301 | |
42 | 855.675 | |
43 | 876.048 | |
44 | 896.421 | 37/22 |
45 | 916.794 | 17/10 |
46 | 937.168 | |
47 | 957.541 | 33/19 |
48 | 977.914 | |
49 | 998.287 | |
50 | 1018.66 | |
51 | 1039.034 | 31/17 |
52 | 1059.407 | 24/13, 35/19 |
53 | 1079.78 | 28/15 |
54 | 1100.153 | |
55 | 1120.526 | |
56 | 1140.9 | 29/15 |
57 | 1161.273 | |
58 | 1181.646 | |
59 | 1202.019 | 2/1 |
60 | 1222.392 | |
61 | 1242.766 | |
62 | 1263.139 | 29/14 |
63 | 1283.512 | |
64 | 1303.885 | 17/8 |
65 | 1324.258 | |
66 | 1344.632 | 37/17 |
67 | 1365.005 | 11/5 |
68 | 1385.378 | |
69 | 1405.751 | |
70 | 1426.124 | |
71 | 1446.498 | 30/13 |
72 | 1466.871 | 7/3 |
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +2.02 | -7.25 | +4.04 | +4.82 | -5.23 | -7.25 | +6.06 | +5.88 | +6.83 | +4.82 | -3.21 |
Relative (%) | +9.9 | -35.6 | +19.8 | +23.6 | -25.7 | -35.6 | +29.7 | +28.9 | +33.5 | +23.6 | -15.7 | |
Steps (reduced) |
59 (59) |
93 (21) |
118 (46) |
137 (65) |
152 (8) |
165 (21) |
177 (33) |
187 (43) |
196 (52) |
204 (60) |
211 (67) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.83 | -5.23 | -2.43 | +8.08 | +4.99 | +7.90 | -4.21 | +8.85 | +5.88 | +6.84 | -9.00 |
Relative (%) | +4.1 | -25.7 | -11.9 | +39.6 | +24.5 | +38.8 | -20.7 | +43.5 | +28.9 | +33.6 | -44.2 | |
Steps (reduced) |
218 (2) |
224 (8) |
230 (14) |
236 (20) |
241 (25) |
246 (30) |
250 (34) |
255 (39) |
259 (43) |
263 (47) |
266 (50) |