71ed7/3
Jump to navigation
Jump to search
Prime factorization
71 (prime)
Step size
20.6602¢
Octave
58\71ed7/3 (1198.29¢)
(semiconvergent)
Twelfth
92\71ed7/3 (1900.73¢)
Consistency limit
16
Distinct consistency limit
6
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |
← 70ed7/3 | 71ed7/3 | 72ed7/3 → |
(semiconvergent)
71 equal divisions of 7/3 (abbreviated 71ed7/3) is a nonoctave tuning system that divides the interval of 7/3 into 71 equal parts of about 20.7 ¢ each. Each step represents a frequency ratio of (7/3)1/71, or the 71st root of 7/3.
Intervals
Steps | Cents | Approximate Ratios |
---|---|---|
0 | 0 | 1/1 |
1 | 20.66 | |
2 | 41.32 | |
3 | 61.98 | 27/26, 28/27, 29/28, 30/29 |
4 | 82.641 | 21/20, 22/21 |
5 | 103.301 | 17/16, 35/33 |
6 | 123.961 | 29/27 |
7 | 144.621 | 25/23 |
8 | 165.281 | 11/10 |
9 | 185.941 | 10/9, 29/26 |
10 | 206.602 | 9/8, 35/31 |
11 | 227.262 | 33/29 |
12 | 247.922 | 15/13 |
13 | 268.582 | 7/6 |
14 | 289.242 | 13/11 |
15 | 309.902 | 37/31 |
16 | 330.562 | 23/19, 29/24 |
17 | 351.223 | 27/22 |
18 | 371.883 | 26/21, 31/25, 36/29 |
19 | 392.543 | |
20 | 413.203 | 33/26 |
21 | 433.863 | 9/7 |
22 | 454.523 | 13/10 |
23 | 475.184 | 25/19, 29/22 |
24 | 495.844 | 4/3 |
25 | 516.504 | 27/20, 31/23, 35/26 |
26 | 537.164 | 15/11 |
27 | 557.824 | 29/21 |
28 | 578.484 | |
29 | 599.144 | 24/17 |
30 | 619.805 | 10/7 |
31 | 640.465 | 29/20 |
32 | 661.125 | 22/15 |
33 | 681.785 | 37/25 |
34 | 702.445 | 3/2 |
35 | 723.105 | |
36 | 743.766 | 20/13 |
37 | 764.426 | 14/9 |
38 | 785.086 | 11/7 |
39 | 805.746 | 35/22 |
40 | 826.406 | 29/18, 37/23 |
41 | 847.066 | 31/19 |
42 | 867.726 | 33/20 |
43 | 888.387 | |
44 | 909.047 | 22/13, 27/16 |
45 | 929.707 | 12/7 |
46 | 950.367 | 26/15 |
47 | 971.027 | 7/4 |
48 | 991.687 | |
49 | 1012.348 | |
50 | 1033.008 | 20/11, 29/16 |
51 | 1053.668 | |
52 | 1074.328 | 13/7 |
53 | 1094.988 | 32/17 |
54 | 1115.648 | |
55 | 1136.308 | 27/14 |
56 | 1156.969 | 37/19 |
57 | 1177.629 | |
58 | 1198.289 | 2/1 |
59 | 1218.949 | |
60 | 1239.609 | |
61 | 1260.269 | 29/14, 31/15 |
62 | 1280.93 | 21/10 |
63 | 1301.59 | 17/8, 36/17 |
64 | 1322.25 | 15/7 |
65 | 1342.91 | |
66 | 1363.57 | 11/5 |
67 | 1384.23 | 20/9 |
68 | 1404.89 | 9/4 |
69 | 1425.551 | |
70 | 1446.211 | 30/13 |
71 | 1466.871 | 7/3 |
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -1.71 | -1.22 | -3.42 | +2.81 | -2.93 | -1.22 | -5.13 | -2.44 | +1.10 | +1.37 | -4.64 |
Relative (%) | -8.3 | -5.9 | -16.6 | +13.6 | -14.2 | -5.9 | -24.8 | -11.8 | +5.3 | +6.6 | -22.5 | |
Steps (reduced) |
58 (58) |
92 (21) |
116 (45) |
135 (64) |
150 (8) |
163 (21) |
174 (32) |
184 (42) |
193 (51) |
201 (59) |
208 (66) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +1.41 | -2.93 | +1.59 | -6.84 | -8.50 | -4.15 | +5.54 | -0.62 | -2.44 | -0.34 | +5.35 |
Relative (%) | +6.8 | -14.2 | +7.7 | -33.1 | -41.1 | -20.1 | +26.8 | -3.0 | -11.8 | -1.6 | +25.9 | |
Steps (reduced) |
215 (2) |
221 (8) |
227 (14) |
232 (19) |
237 (24) |
242 (29) |
247 (34) |
251 (38) |
255 (42) |
259 (46) |
263 (50) |