70ed7/3
Jump to navigation
Jump to search
Prime factorization
2 × 5 × 7
Step size
20.9553¢
Octave
57\70ed7/3 (1194.45¢)
Twelfth
91\70ed7/3 (1906.93¢) (→13\10ed7/3)
Consistency limit
2
Distinct consistency limit
2
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |
← 69ed7/3 | 70ed7/3 | 71ed7/3 → |
70 equal divisions of 7/3 (abbreviated 70ed7/3) is a nonoctave tuning system that divides the interval of 7/3 into 70 equal parts of about 21 ¢ each. Each step represents a frequency ratio of (7/3)1/70, or the 70th root of 7/3.
Intervals
Steps | Cents | Approximate Ratios |
---|---|---|
0 | 0 | 1/1 |
1 | 20.955 | |
2 | 41.911 | |
3 | 62.866 | 29/28 |
4 | 83.821 | |
5 | 104.776 | 33/31, 35/33 |
6 | 125.732 | 14/13 |
7 | 146.687 | 25/23, 37/34 |
8 | 167.642 | 11/10 |
9 | 188.598 | 29/26 |
10 | 209.553 | 26/23, 35/31 |
11 | 230.508 | |
12 | 251.464 | 15/13, 22/19 |
13 | 272.419 | 34/29 |
14 | 293.374 | |
15 | 314.329 | 6/5 |
16 | 335.285 | 17/14 |
17 | 356.24 | |
18 | 377.195 | 36/29 |
19 | 398.151 | 29/23 |
20 | 419.106 | 14/11, 37/29 |
21 | 440.061 | |
22 | 461.017 | 17/13, 30/23 |
23 | 481.972 | 29/22, 33/25, 37/28 |
24 | 502.927 | |
25 | 523.882 | 23/17 |
26 | 544.838 | 26/19 |
27 | 565.793 | 18/13, 25/18 |
28 | 586.748 | |
29 | 607.704 | 37/26 |
30 | 628.659 | 33/23, 36/25 |
31 | 649.614 | |
32 | 670.57 | 25/17, 28/19, 31/21 |
33 | 691.525 | |
34 | 712.48 | |
35 | 733.435 | 26/17, 29/19 |
36 | 754.391 | 17/11 |
37 | 775.346 | 36/23 |
38 | 796.301 | 19/12 |
39 | 817.257 | |
40 | 838.212 | |
41 | 859.167 | 23/14 |
42 | 880.123 | |
43 | 901.078 | 37/22 |
44 | 922.033 | 17/10, 29/17 |
45 | 942.988 | 19/11, 31/18 |
46 | 963.944 | |
47 | 984.899 | 23/13, 30/17 |
48 | 1005.854 | 25/14, 34/19 |
49 | 1026.81 | |
50 | 1047.765 | 11/6 |
51 | 1068.72 | 13/7, 37/20 |
52 | 1089.676 | |
53 | 1110.631 | 19/10 |
54 | 1131.586 | 25/13 |
55 | 1152.541 | 35/18, 37/19 |
56 | 1173.497 | |
57 | 1194.452 | |
58 | 1215.407 | |
59 | 1236.363 | |
60 | 1257.318 | 29/14, 31/15 |
61 | 1278.273 | 23/11 |
62 | 1299.229 | 36/17 |
63 | 1320.184 | 15/7 |
64 | 1341.139 | 13/6 |
65 | 1362.094 | 11/5 |
66 | 1383.05 | |
67 | 1404.005 | |
68 | 1424.96 | 25/11 |
69 | 1445.916 | 30/13 |
70 | 1466.871 | 7/3 |
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -5.55 | +4.98 | +9.86 | +0.74 | -0.57 | +4.98 | +4.31 | +9.95 | -4.81 | -2.17 | -6.12 |
Relative (%) | -26.5 | +23.8 | +47.0 | +3.5 | -2.7 | +23.8 | +20.6 | +47.5 | -22.9 | -10.3 | -29.2 | |
Steps (reduced) |
57 (57) |
91 (21) |
115 (45) |
133 (63) |
148 (8) |
161 (21) |
172 (32) |
182 (42) |
190 (50) |
198 (58) |
205 (65) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +2.00 | -0.57 | +5.72 | -1.24 | -1.42 | +4.41 | -5.38 | -10.35 | +9.95 | -7.72 | -0.85 |
Relative (%) | +9.5 | -2.7 | +27.3 | -5.9 | -6.8 | +21.0 | -25.7 | -49.4 | +47.5 | -36.8 | -4.1 | |
Steps (reduced) |
212 (2) |
218 (8) |
224 (14) |
229 (19) |
234 (24) |
239 (29) |
243 (33) |
247 (37) |
252 (42) |
255 (45) |
259 (49) |