37ed7/3

From Xenharmonic Wiki
Jump to navigation Jump to search
Icon-Stub.png This page is a stub. You can help the Xenharmonic Wiki by expanding it.
← 36ed7/3 37ed7/3 38ed7/3 →
Prime factorization 37 (prime)
Step size 39.6452¢ 
Octave 30\37ed7/3 (1189.35¢)
Twelfth 48\37ed7/3 (1902.97¢)
(semiconvergent)
Consistency limit 3
Distinct consistency limit 3

37 equal divisions of 7/3 (abbreviated 37ed7/3) is a nonoctave tuning system that divides the interval of 7/3 into 37 equal parts of about 39.6⁠ ⁠¢ each. Each step represents a frequency ratio of (7/3)1/37, or the 37th root of 7/3.

Intervals

Steps Cents Approximate ratios
0 0 1/1
1 39.6
2 79.3 22/21, 23/22
3 118.9 15/14, 29/27
4 158.6 23/21
5 198.2 19/17, 28/25
6 237.9
7 277.5 27/23
8 317.2 6/5
9 356.8 27/22
10 396.5 29/23
11 436.1 9/7
12 475.7 29/22
13 515.4
14 555 29/21
15 594.7
16 634.3 13/9
17 674
18 713.6
19 753.3 17/11
20 792.9
21 832.5 21/13, 29/18
22 872.2
23 911.8 22/13
24 951.5 19/11, 26/15
25 991.1 23/13
26 1030.8
27 1070.4 13/7
28 1110.1
29 1149.7
30 1189.4
31 1229
32 1268.6 25/12, 27/13, 29/14
33 1308.3
34 1347.9
35 1387.6 29/13
36 1427.2
37 1466.9 7/3

Harmonics

Approximation of harmonics in 37ed7/3
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) -10.6 +1.0 +18.4 -11.2 -9.6 +1.0 +7.7 +2.0 +17.8 +11.4 +19.4
Relative (%) -26.9 +2.6 +46.3 -28.1 -24.3 +2.6 +19.4 +5.1 +45.0 +28.8 +48.9
Steps
(reduced)
30
(30)
48
(11)
61
(24)
70
(33)
78
(4)
85
(11)
91
(17)
96
(22)
101
(27)
105
(31)
109
(35)
Approximation of harmonics in 37ed7/3
Harmonic 13 14 15 16 17 18 19 20 21 22 23
Error Absolute (¢) -0.3 -9.6 -10.1 -2.9 +11.0 -8.6 +16.7 +7.2 +2.0 +0.8 +3.1
Relative (%) -0.7 -24.3 -25.6 -7.4 +27.9 -21.7 +42.2 +18.2 +5.1 +2.0 +7.9
Steps
(reduced)
112
(1)
115
(4)
118
(7)
121
(10)
124
(13)
126
(15)
129
(18)
131
(20)
133
(22)
135
(24)
137
(26)