36ed7/3

From Xenharmonic Wiki
Jump to navigation Jump to search
Icon-Stub.png This page is a stub. You can help the Xenharmonic Wiki by expanding it.
← 35ed7/336ed7/337ed7/3 →
Prime factorization 22 × 32
Step size 40.7464¢ 
Octave 29\36ed7/3 (1181.65¢)
Twelfth 47\36ed7/3 (1915.08¢)
Consistency limit 2
Distinct consistency limit 2
Special properties

36 equal divisions of 7/3 (abbreviated 36ed7/3) is a nonoctave tuning system that divides the interval of 7/3 into 36 equal parts of about 40.7 ¢ each. Each step represents a frequency ratio of (7/3)1/36, or the 36th root of 7/3.

Intervals

Steps Cents Approximate Ratios
0 0 1/1
1 40.746
2 81.493 23/22
3 122.239 14/13, 15/14
4 162.986
5 203.732 28/25
6 244.478 15/13
7 285.225 13/11
8 325.971 23/19
9 366.718
10 407.464 19/15, 29/23
11 448.211 22/17
12 488.957
13 529.703 15/11, 19/14, 23/17
14 570.45 18/13
15 611.196
16 651.943 19/13
17 692.689
18 733.435 23/15, 26/17, 29/19
19 774.182
20 814.928
21 855.675 18/11, 23/14
22 896.421
23 937.168
24 977.914
25 1018.66
26 1059.407
27 1100.153
28 1140.9 29/15
29 1181.646
30 1222.392
31 1263.139 25/12, 29/14
32 1303.885
33 1344.632 13/6
34 1385.378 29/13
35 1426.124
36 1466.871 7/3

Harmonics

Approximation of harmonics in 36ed7/3
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) -18.4 +13.1 +4.0 -15.6 -5.2 +13.1 -14.3 -14.5 +6.8 +4.8 +17.2
Relative (%) -45.0 +32.2 +9.9 -38.2 -12.8 +32.2 -35.1 -35.6 +16.8 +11.8 +42.1
Steps
(reduced)
29
(29)
47
(11)
59
(23)
68
(32)
76
(4)
83
(11)
88
(16)
93
(21)
98
(26)
102
(30)
106
(34)
Approximation of harmonics in 36ed7/3
Harmonic 13 14 15 16 17 18 19 20 21 22 23
Error Absolute (¢) +0.8 -5.2 -2.4 +8.1 -15.4 +7.9 -4.2 -11.5 -14.5 -13.5 -9.0
Relative (%) +2.0 -12.8 -6.0 +19.8 -37.8 +19.4 -10.3 -28.3 -35.6 -33.2 -22.1
Steps
(reduced)
109
(1)
112
(4)
115
(7)
118
(10)
120
(12)
123
(15)
125
(17)
127
(19)
129
(21)
131
(23)
133
(25)