35ed7/3

From Xenharmonic Wiki
Jump to navigation Jump to search
Icon-Stub.png This page is a stub. You can help the Xenharmonic Wiki by expanding it.
← 34ed7/3 35ed7/3 36ed7/3 →
Prime factorization 5 × 7
Step size 41.9106¢ 
Octave 29\35ed7/3 (1215.41¢)
Twelfth 45\35ed7/3 (1885.98¢) (→9\7ed7/3)
Consistency limit 2
Distinct consistency limit 2

35 equal divisions of 7/3 (abbreviated 35ed7/3) is a nonoctave tuning system that divides the interval of 7/3 into 35 equal parts of about 41.9 ¢ each. Each step represents a frequency ratio of (7/3)1/35, or the 35th root of 7/3.

Intervals

Steps Cents Approximate ratios
0 0 1/1
1 41.911
2 83.821 20/19, 23/22
3 125.732 14/13, 27/25
4 167.642 11/10
5 209.553 26/23
6 251.464 22/19
7 293.374 13/11
8 335.285 17/14, 23/19, 28/23
9 377.195
10 419.106 14/11
11 461.017 13/10, 17/13
12 502.927
13 544.838 26/19
14 586.748 7/5
15 628.659
16 670.57 28/19
17 712.48
18 754.391 17/11
19 796.301 19/12
20 838.212
21 880.123 5/3
22 922.033 17/10
23 963.944
24 1005.854
25 1047.765 11/6
26 1089.676
27 1131.586 23/12
28 1173.497
29 1215.407
30 1257.318
31 1299.229
32 1341.139 13/6
33 1383.05
34 1424.96
35 1466.871 7/3

Harmonics

Approximation of harmonics in 35ed7/3
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) +15.4 -16.0 -11.1 -20.2 -0.6 -16.0 +4.3 +10.0 -4.8 -2.2 +14.8
Relative (%) +36.8 -38.1 -26.5 -48.2 -1.4 -38.1 +10.3 +23.8 -11.5 -5.2 +35.4
Steps
(reduced)
29
(29)
45
(10)
57
(22)
66
(31)
74
(4)
80
(10)
86
(16)
91
(21)
95
(25)
99
(29)
103
(33)
Approximation of harmonics in 35ed7/3
Harmonic 13 14 15 16 17 18 19 20 21 22 23
Error Absolute (¢) +2.0 -0.6 +5.7 +19.7 -1.4 -16.5 +15.6 +10.6 +10.0 +13.2 +20.1
Relative (%) +4.8 -1.4 +13.6 +47.0 -3.4 -39.5 +37.2 +25.3 +23.8 +31.6 +48.0
Steps
(reduced)
106
(1)
109
(4)
112
(7)
115
(10)
117
(12)
119
(14)
122
(17)
124
(19)
126
(21)
128
(23)
130
(25)