78ed7/3
Jump to navigation
Jump to search
Prime factorization
2 × 3 × 13
Step size
18.806¢
Octave
64\78ed7/3 (1203.59¢) (→32\39ed7/3)
Twelfth
101\78ed7/3 (1899.41¢)
Consistency limit
3
Distinct consistency limit
3
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |
← 77ed7/3 | 78ed7/3 | 79ed7/3 → |
78 equal divisions of 7/3 (abbreviated 78ed7/3) is a nonoctave tuning system that divides the interval of 7/3 into 78 equal parts of about 18.8 ¢ each. Each step represents a frequency ratio of (7/3)1/78, or the 78th root of 7/3.
Intervals
Steps | Cents | Approximate ratios |
---|---|---|
0 | 0 | 1/1 |
1 | 18.806 | |
2 | 37.612 | |
3 | 56.418 | 30/29, 31/30 |
4 | 75.224 | 23/22, 24/23 |
5 | 94.03 | 19/18, 37/35, 39/37 |
6 | 112.836 | 31/29 |
7 | 131.642 | 27/25 |
8 | 150.448 | 12/11 |
9 | 169.254 | |
10 | 188.06 | 29/26, 39/35 |
11 | 206.866 | 35/31 |
12 | 225.672 | 33/29 |
13 | 244.478 | 15/13, 23/20, 38/33 |
14 | 263.285 | |
15 | 282.091 | 20/17, 33/28 |
16 | 300.897 | 25/21 |
17 | 319.703 | |
18 | 338.509 | 17/14, 28/23 |
19 | 357.315 | |
20 | 376.121 | 36/29 |
21 | 394.927 | 39/31 |
22 | 413.733 | 33/26 |
23 | 432.539 | 9/7 |
24 | 451.345 | 13/10, 35/27 |
25 | 470.151 | 38/29 |
26 | 488.957 | |
27 | 507.763 | |
28 | 526.569 | 19/14, 23/17 |
29 | 545.375 | 26/19, 37/27 |
30 | 564.181 | 18/13 |
31 | 582.987 | 7/5 |
32 | 601.793 | 17/12 |
33 | 620.599 | 10/7 |
34 | 639.405 | 13/9 |
35 | 658.211 | 19/13 |
36 | 677.017 | 31/21, 34/23, 37/25 |
37 | 695.823 | |
38 | 714.629 | |
39 | 733.435 | 26/17, 29/19 |
40 | 752.241 | 17/11 |
41 | 771.048 | 39/25 |
42 | 789.854 | 30/19 |
43 | 808.66 | |
44 | 827.466 | 21/13, 29/18 |
45 | 846.272 | 31/19 |
46 | 865.078 | 28/17, 33/20 |
47 | 883.884 | 5/3 |
48 | 902.69 | |
49 | 921.496 | 17/10, 29/17 |
50 | 940.302 | 31/18 |
51 | 959.108 | |
52 | 977.914 | 37/21 |
53 | 996.72 | |
54 | 1015.526 | 9/5 |
55 | 1034.332 | 20/11 |
56 | 1053.138 | |
57 | 1071.944 | 13/7 |
58 | 1090.75 | |
59 | 1109.556 | 19/10, 36/19 |
60 | 1128.362 | 23/12 |
61 | 1147.168 | 33/17 |
62 | 1165.974 | |
63 | 1184.78 | |
64 | 1203.586 | |
65 | 1222.392 | |
66 | 1241.198 | |
67 | 1260.004 | 29/14, 31/15 |
68 | 1278.811 | 23/11 |
69 | 1297.617 | 36/17 |
70 | 1316.423 | 15/7 |
71 | 1335.229 | |
72 | 1354.035 | |
73 | 1372.841 | |
74 | 1391.647 | 29/13, 38/17 |
75 | 1410.453 | |
76 | 1429.259 | |
77 | 1448.065 | 30/13 |
78 | 1466.871 | 7/3 |
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +3.59 | -2.55 | +7.17 | -3.02 | +1.04 | -2.55 | -8.05 | -5.09 | +0.57 | +4.82 | +4.63 |
Relative (%) | +19.1 | -13.5 | +38.1 | -16.1 | +5.5 | -13.5 | -42.8 | -27.1 | +3.0 | +25.6 | +24.6 | |
Steps (reduced) |
64 (64) |
101 (23) |
128 (50) |
148 (70) |
165 (9) |
179 (23) |
191 (35) |
202 (46) |
212 (56) |
221 (65) |
229 (73) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -2.30 | +1.04 | -5.57 | -4.46 | +3.42 | -1.50 | -1.08 | +4.15 | -5.09 | +8.40 | +6.67 |
Relative (%) | -12.2 | +5.5 | -29.6 | -23.7 | +18.2 | -8.0 | -5.7 | +22.1 | -27.1 | +44.7 | +35.5 | |
Steps (reduced) |
236 (2) |
243 (9) |
249 (15) |
255 (21) |
261 (27) |
266 (32) |
271 (37) |
276 (42) |
280 (46) |
285 (51) |
289 (55) |