39ed7/3

From Xenharmonic Wiki
Jump to navigation Jump to search
Icon-Stub.png This page is a stub. You can help the Xenharmonic Wiki by expanding it.
← 38ed7/3 39ed7/3 40ed7/3 →
Prime factorization 3 × 13
Step size 37.6121¢ 
Octave 32\39ed7/3 (1203.59¢)
Twelfth 51\39ed7/3 (1918.22¢) (→17\13ed7/3)
Consistency limit 4
Distinct consistency limit 4

39 equal divisions of 7/3 (abbreviated 39ed7/3) is a nonoctave tuning system that divides the interval of 7/3 into 39 equal parts of about 37.6 ¢ each. Each step represents a frequency ratio of (7/3)1/39, or the 39th root of 7/3.

Intervals

Steps Cents Approximate ratios
0 0 1/1
1 37.612
2 75.224 23/22, 26/25
3 112.836 15/14, 16/15
4 150.448 25/23
5 188.06 29/26
6 225.672 8/7, 25/22
7 263.285 7/6, 29/25
8 300.897 19/16
9 338.509
10 376.121
11 413.733 19/15
12 451.345 13/10, 22/17
13 488.957
14 526.569 19/14, 23/17
15 564.181
16 601.793
17 639.405 29/20
18 677.017 28/19
19 714.629
20 752.241 17/11, 20/13
21 789.854 19/12
22 827.466
23 865.078
24 902.69
25 940.302 12/7
26 977.914
27 1015.526
28 1053.138
29 1090.75 15/8
30 1128.362 25/13
31 1165.974
32 1203.586 2/1
33 1241.198
34 1278.811 23/11
35 1316.423 15/7
36 1354.035
37 1391.647 29/13
38 1429.259 16/7
39 1466.871 7/3

Harmonics

Approximation of harmonics in 39ed7/3
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) +3.6 +16.3 +7.2 -3.0 -17.8 +16.3 +10.8 -5.1 +0.6 -14.0 -14.2
Relative (%) +9.5 +43.2 +19.1 -8.0 -47.2 +43.2 +28.6 -13.5 +1.5 -37.2 -37.7
Steps
(reduced)
32
(32)
51
(12)
64
(25)
74
(35)
82
(4)
90
(12)
96
(18)
101
(23)
106
(28)
110
(32)
114
(36)
Approximation of harmonics in 39ed7/3
Harmonic 13 14 15 16 17 18 19 20 21 22 23
Error Absolute (¢) -2.3 -17.8 +13.2 +14.3 -15.4 -1.5 +17.7 +4.2 -5.1 -10.4 -12.1
Relative (%) -6.1 -47.2 +35.2 +38.1 -40.9 -4.0 +47.1 +11.0 -13.5 -27.7 -32.3
Steps
(reduced)
118
(1)
121
(4)
125
(8)
128
(11)
130
(13)
133
(16)
136
(19)
138
(21)
140
(23)
142
(25)
144
(27)