40ed7/3

From Xenharmonic Wiki
Jump to navigation Jump to search
Icon-Stub.png This page is a stub. You can help the Xenharmonic Wiki by expanding it.
← 39ed7/3 40ed7/3 41ed7/3 →
Prime factorization 23 × 5
Step size 36.6718¢ 
Octave 33\40ed7/3 (1210.17¢)
Twelfth 52\40ed7/3 (1906.93¢) (→13\10ed7/3)
Consistency limit 3
Distinct consistency limit 3

40 equal divisions of 7/3 (abbreviated 40ed7/3) is a nonoctave tuning system that divides the interval of 7/3 into 40 equal parts of about 36.7⁠ ⁠¢ each. Each step represents a frequency ratio of (7/3)1/40, or the 40th root of 7/3.

Intervals

Steps Cents Approximate ratios
0 0 1/1
1 36.7
2 73.3 22/21, 23/22, 26/25
3 110
4 146.7 25/23
5 183.4 10/9, 29/26
6 220 17/15, 25/22
7 256.7 22/19, 29/25
8 293.4 13/11
9 330 17/14, 23/19
10 366.7 21/17, 26/21
11 403.4 19/15, 29/23
12 440.1 9/7, 22/17
13 476.7 25/19, 29/22
14 513.4 27/20
15 550.1 26/19
16 586.7 7/5
17 623.4 10/7
18 660.1 19/13, 22/15
19 696.8 3/2
20 733.4 23/15, 26/17, 29/19
21 770.1 14/9
22 806.8 27/17
23 843.5
24 880.1 5/3
25 916.8 17/10, 22/13
26 953.5 26/15
27 990.1 23/13, 30/17
28 1026.8
29 1063.5
30 1100.2 17/9
31 1136.8 25/13, 27/14, 29/15
32 1173.5
33 1210.2
34 1246.8
35 1283.5 21/10, 23/11
36 1320.2 15/7
37 1356.9
38 1393.5 29/13
39 1430.2
40 1466.9 7/3

Harmonics

Approximation of harmonics in 40ed7/3
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) +10.2 +5.0 -16.3 +0.7 +15.1 +5.0 -6.2 +10.0 +10.9 -7.4 -11.4
Relative (%) +27.7 +13.6 -44.5 +2.0 +41.3 +13.6 -16.8 +27.1 +29.7 -20.2 -31.0
Steps
(reduced)
33
(33)
52
(12)
65
(25)
76
(36)
85
(5)
92
(12)
98
(18)
104
(24)
109
(29)
113
(33)
117
(37)
Approximation of harmonics in 40ed7/3
Harmonic 13 14 15 16 17 18 19 20 21 22 23
Error Absolute (¢) -3.2 +15.1 +5.7 +4.0 +9.1 -16.5 -0.1 -15.6 +10.0 +2.8 -0.9
Relative (%) -8.8 +41.3 +15.6 +10.9 +24.7 -45.1 -0.4 -42.5 +27.1 +7.5 -2.3
Steps
(reduced)
121
(1)
125
(5)
128
(8)
131
(11)
134
(14)
136
(16)
139
(19)
141
(21)
144
(24)
146
(26)
148
(28)