11ed6

From Xenharmonic Wiki
Jump to navigation Jump to search
← 10ed6 11ed6 12ed6 →
Prime factorization 11 (prime)
Step size 281.996¢ 
Octave 4\11ed6 (1127.98¢)
Twelfth 7\11ed6 (1973.97¢)
Consistency limit 2
Distinct consistency limit 2

11ED6 is the equal division of the sixth harmonic into six parts of 281.9959 cents each, corresponding to 4.2554 edo. It is related to the temperaments which temper out 28561/28512 and 85293/85184 in the 13-limit, which is supported by 17, 34, 149, 166, 183, 200, 217, and 234 EDOs.

Related temperament

2.3.11 subgroup 17&183

Comma: |-19 36 0 0 -11>

POTE generator: ~|7 -13 0 0 4> = 281.9832

Mapping: [<1 -1 -5|, <0 11 36|]

EDOs: 17, 34, 166, 183, 200, 217, 366, 383, 400, 566

2.3.11.13 subgroup 17&183

Commas: 28561/28512, 85293/85184

POTE generator: ~286/243 = 281.9821

Mapping: [<1 -1 -5 -1|, <0 11 36 20|]

EDOs: 17, 34, 149, 166, 183, 200, 217, 234, 366

Intervals

Steps Cents Approximate ratios
0 0 1/1
1 281.996 7/6, 13/11, 20/17, 22/19
2 563.992 7/5, 15/11, 18/13
3 845.988 18/11, 21/13
4 1127.984 19/10, 21/11
5 1409.98
6 1691.975
7 1973.971 19/6, 22/7
8 2255.967 11/3
9 2537.963 13/3, 22/5
10 2819.959
11 3101.955 6/1

Harmonics

Approximation of harmonics in 11ed6
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) -72 +72 +138 +34 +0 +15 +66 -138 -38 +79 -72
Relative (%) -25.5 +25.5 +48.9 +11.9 +0.0 +5.4 +23.4 -48.9 -13.6 +27.9 -25.5
Steps
(reduced)
4
(4)
7
(7)
9
(9)
10
(10)
11
(0)
12
(1)
13
(2)
13
(2)
14
(3)
15
(4)
15
(4)
Approximation of harmonics in 11ed6
Harmonic 13 14 15 16 17 18 19 20 21 22 23
Error Absolute (¢) +71 -57 +106 -6 -111 +72 -22 -110 +87 +7 -70
Relative (%) +25.3 -20.2 +37.5 -2.2 -39.4 +25.5 -7.7 -39.1 +30.9 +2.3 -24.9
Steps
(reduced)
16
(5)
16
(5)
17
(6)
17
(6)
17
(6)
18
(7)
18
(7)
18
(7)
19
(8)
19
(8)
19
(8)