152edo

From Xenharmonic Wiki
Revision as of 14:04, 11 April 2022 by FloraC (talk | contribs) (Precision, +commas, update template)
Jump to navigation Jump to search
← 151edo 152edo 153edo →
Prime factorization 23 × 19
Step size 7.89474 ¢ 
Fifth 89\152 (702.632 ¢)
Semitones (A1:m2) 15:11 (118.4 ¢ : 86.84 ¢)
Consistency limit 11
Distinct consistency limit 11

The 152 equal divisions of the octave (152edo) or 152(-tone) equal temperament (152tet, 152et) when viewed from a regular temperament perspective, is the tuning system derived by dividing the octave into 152 equally sized parts of about 7.89 cents each.

Theory

152et is a strong 11-limit system, with the 3, 5, 7, and 11 slightly sharp. It tempers out 1600000/1594323, the amity comma, in the 5-limit; 4375/4374, 5120/5103, 6144/6125 and 16875/16807 in the 7-limit; 540/539, 1375/1372, 4000/3993, 5632/5625 and 9801/9800 in the 11-limit.

It has two reasonable mappings for 13, with the 152f val scoring much better. The patent val tempers out 169/168, 325/324, 351/350, 364/363, 1001/1000, 1573/1568, and 4096/4095. The 152f val tempers out 352/351, 625/624, 640/637, 729/728, 847/845, 1188/1183, 1575/1573, 1716/1715 and 2080/2079.

It provides the optimal patent val for the 11-limit grendel and kwai linear temperaments, the 13-limit rank two temperament octopus, the 11-limit planar temperament laka, and the rank five temperament tempering out 169/168.

Paul Erlich has suggested that 152edo could be considered a sort of universal tuning.

152 = 8 × 19, with divisors 2, 4, 8, 19, 38, 76.

Prime harmonics

Approximation of prime harmonics in 152edo
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) +0.00 +0.68 +0.53 +2.23 +1.31 -3.69 -2.32 +2.49 +3.30 -3.26 -0.30
Relative (%) +0.0 +8.6 +6.7 +28.2 +16.6 -46.7 -29.4 +31.5 +41.9 -41.3 -3.8
Steps
(reduced)
152
(0)
241
(89)
353
(49)
427
(123)
526
(70)
562
(106)
621
(13)
646
(38)
688
(80)
738
(130)
753
(145)

Regular temperament properties

Subgroup Comma list Mapping Optimal
8ve stretch (¢)
Tuning error
Absolute (¢) Relative (%)
2.3 [241 -152 [152 241]] -0.213 0.213 2.70
2.3.5 1600000/1594323, [32 -7 -9 [152 241 353]] -0.218 0.174 2.21
2.3.5.7 4375/4374, 5120/5103, 16875/16807 [152 241 353 427]] -0.362 0.291 3.69
2.3.5.7.11 540/539, 1375/1372, 4000/3993, 5120/5103 [152 241 353 427 526]] -0.365 0.260 3.30
2.3.5.7.11.13 352/351, 540/539, 625/624, 729/728, 1575/1573 [152 241 353 427 526 563]] (152f) -0.494 0.373 4.73

Rank-2 temperaments

Table of rank-2 temperaments by generator
Periods
per octave
Generator
(reduced)
Cents
(reduced)
Associated
ratio
Temperaments
1 7\152 55.26 33/32 Escapade / alphaquarter
1 31\152 244.74 15/13 Subsemifourth
1 39\152 307.89 3200/2673 Familia
1 43\152 339.47 243/200 Amity
1 49\152 386.84 5/4 Grendel
1 63\152 497.37 4/3 Kwai
1 71\152 560.53 242/175 Whoosh / whoops
2 7\152 55.26 33/32 Biscapade
2 9\152 71.05 25/24 Vishnu / acyuta (152f) / ananta (152)
2 43\152
(33\152)
339.47
(260.53)
243/200
(64/55)
Hemiamity
2 55\152
(21\152)
434.21
(165.79)
9/7
(11/10)
Supers
4 63\152
(13\152)
497.37
(102.63)
4/3
(35/33)
Undim / unlit
8 63\152
(6\152)
497.37
(47.37)
4/3
(36/35)
Twilight
8 74\152
(2\152)
584.21
(15.79)
7/5
(126/125)
Octoid (152f) / octopus (152)
19 63\152
(1\152)
497.37
(7.89)
4/3
(225/224)
Enneadecal
38 63\152
(1\152)
497.37
(7.89)
4/3
(225/224)
Hemienneadecal