432edo

From Xenharmonic Wiki
Revision as of 17:05, 15 January 2025 by ArrowHead294 (talk | contribs)
Jump to navigation Jump to search
← 431edo 432edo 433edo →
Prime factorization 24 × 33
Step size 2.77778 ¢ 
Fifth 253\432 (702.778 ¢)
Semitones (A1:m2) 43:31 (119.4 ¢ : 86.11 ¢)
Consistency limit 7
Distinct consistency limit 7

Template:EDO intro

Theory

432edo has a reasonable approximation to the 7-limit, where the equal temperament tempers out 5120/5103, 703125/702464, 40353607/40310784, 102760448/102515625, and 283115520/282475249. It supports and provides a good tuning for the 5-limit maja temperament.

Odd harmonics

Approximation of odd harmonics in 432edo
Harmonic 3 5 7 9 11 13 15 17 19 21 23
Error Absolute (¢) +0.82 -0.20 +0.62 -1.13 -1.32 +1.14 +0.62 +0.60 -0.29 -1.34 -0.50
Relative (%) +29.6 -7.3 +22.3 -40.8 -47.4 +41.0 +22.3 +21.6 -10.5 -48.1 -17.9
Steps
(reduced)
685
(253)
1003
(139)
1213
(349)
1369
(73)
1494
(198)
1599
(303)
1688
(392)
1766
(38)
1835
(107)
1897
(169)
1954
(226)

Subsets and supersets

432 is a highly factorable number, factoring into 24 × 33, so 432edo has subset edos 2, 3, 4, 6, 8, 9, 12, 16, 18, 24, 27, 36, 48, 54, 72, 108, 144, and 216.

Regular temperament properties

Subgroup Comma list Mapping Optimal
8ve stretch (¢)
Tuning error
Absolute (¢) Relative (%)
2.3 [685 -432 [432 685]] −0.2596 0.2595 9.34
2.3.5 [41 -20 -4, [-3 -23 17 [432 685 1003]] −0.1440 0.2676 9.63
2.3.5.7 5120/5103, 703125/702464, 6565234375/6530347008 [432 685 1003 1213]] −0.1631 0.2341 8.43

Rank-2 temperaments

Table of rank-2 temperaments by generator
Periods
per 8ve
Generator* Cents* Associated
ratio*
Temperaments
1 163\432 452.78 125/96 Maja
4 179\432
(37\432)
497.22
(102.78)
4/3 Undim

* Octave-reduced form, reduced to the first half-octave, and minimal form in parentheses if distinct