Template:MOSes by EDO

Revision as of 04:25, 22 September 2024 by BudjarnLambeth (talk | contribs) (Example of usage)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Copied from Ganaram Inukshuk's template on 22 Oct 2024, the only change was calling a slightly altered copy of the module.

Example of usage

11edo

These are all moment of symmetry scales in 11edo.
Single-period MOS scales

Generators 6\11 and 5\11
Step visualization MOS (name) Step sizes Step ratio
├─────┼────┤ 1L 1s 6, 5 6:5
├┼────┼────┤ 2L 1s 5, 1 5:1
├┼┼───┼┼───┤ 2L 3s 4, 1 4:1
├┼┼┼──┼┼┼──┤ 2L 5s (antidiatonic) 3, 1 3:1
├┼┼┼┼─┼┼┼┼─┤ 2L 7s (balzano) 2, 1 2:1
├┼┼┼┼┼┼┼┼┼┼┤ 11edo 1, 1 1:1
Generators 7\11 and 4\11
Step visualization MOS (name) Step sizes Step ratio
├──────┼───┤ 1L 1s 7, 4 7:4
├──┼───┼───┤ 2L 1s 4, 3 4:3
├──┼──┼┼──┼┤ 3L 2s 3, 1 3:1
├─┼┼─┼┼┼─┼┼┤ 3L 5s (checkertonic) 2, 1 2:1
├┼┼┼┼┼┼┼┼┼┼┤ 11edo 1, 1 1:1
Generators 8\11 and 3\11
Step visualization MOS (name) Step sizes Step ratio
├───────┼──┤ 1L 1s 8, 3 8:3
├────┼──┼──┤ 1L 2s 5, 3 5:3
├─┼──┼──┼──┤ 3L 1s 3, 2 3:2
├─┼─┼┼─┼┼─┼┤ 4L 3s (smitonic) 2, 1 2:1
├┼┼┼┼┼┼┼┼┼┼┤ 11edo 1, 1 1:1
Generators 9\11 and 2\11
Step visualization MOS (name) Step sizes Step ratio
├────────┼─┤ 1L 1s 9, 2 9:2
├──────┼─┼─┤ 1L 2s 7, 2 7:2
├────┼─┼─┼─┤ 1L 3s 5, 2 5:2
├──┼─┼─┼─┼─┤ 1L 4s 3, 2 3:2
├┼─┼─┼─┼─┼─┤ 5L 1s (machinoid) 2, 1 2:1
├┼┼┼┼┼┼┼┼┼┼┤ 11edo 1, 1 1:1
Generators 10\11 and 1\11
Step visualization MOS (name) Step sizes Step ratio
├─────────┼┤ 1L 1s 10, 1 10:1
├────────┼┼┤ 1L 2s 9, 1 9:1
├───────┼┼┼┤ 1L 3s 8, 1 8:1
├──────┼┼┼┼┤ 1L 4s 7, 1 7:1
├─────┼┼┼┼┼┤ 1L 5s (antimachinoid) 6, 1 6:1
├────┼┼┼┼┼┼┤ 1L 6s (onyx) 5, 1 5:1
├───┼┼┼┼┼┼┼┤ 1L 7s (antipine) 4, 1 4:1
├──┼┼┼┼┼┼┼┼┤ 1L 8s (antisubneutralic) 3, 1 3:1
├─┼┼┼┼┼┼┼┼┼┤ 1L 9s (antisinatonic) 2, 1 2:1
├┼┼┼┼┼┼┼┼┼┼┤ 11edo 1, 1 1:1


12edo

These are all moment of symmetry scales in 12edo.
Single-period MOS scales

Generators 7\12 and 5\12
Step visualization MOS (name) Step sizes Step ratio
├──────┼────┤ 1L 1s 7, 5 7:5
├─┼────┼────┤ 2L 1s 5, 2 5:2
├─┼─┼──┼─┼──┤ 2L 3s 3, 2 3:2
├─┼─┼─┼┼─┼─┼┤ 5L 2s (diatonic) 2, 1 2:1
├┼┼┼┼┼┼┼┼┼┼┼┤ 12edo 1, 1 1:1
Generators 8\12 and 4\12
Step visualization MOS (name) Step sizes Step ratio
├───────┼───┤ 1L 1s 8, 4 2:1
├───┼───┼───┤ 3edo 4, 4 1:1
Generators 9\12 and 3\12
Step visualization MOS (name) Step sizes Step ratio
├────────┼──┤ 1L 1s 9, 3 3:1
├─────┼──┼──┤ 1L 2s 6, 3 2:1
├──┼──┼──┼──┤ 4edo 3, 3 1:1
Generators 10\12 and 2\12
Step visualization MOS (name) Step sizes Step ratio
├─────────┼─┤ 1L 1s 10, 2 5:1
├───────┼─┼─┤ 1L 2s 8, 2 4:1
├─────┼─┼─┼─┤ 1L 3s 6, 2 3:1
├───┼─┼─┼─┼─┤ 1L 4s 4, 2 2:1
├─┼─┼─┼─┼─┼─┤ 6edo 2, 2 1:1
Generators 11\12 and 1\12
Step visualization MOS (name) Step sizes Step ratio
├──────────┼┤ 1L 1s 11, 1 11:1
├─────────┼┼┤ 1L 2s 10, 1 10:1
├────────┼┼┼┤ 1L 3s 9, 1 9:1
├───────┼┼┼┼┤ 1L 4s 8, 1 8:1
├──────┼┼┼┼┼┤ 1L 5s (antimachinoid) 7, 1 7:1
├─────┼┼┼┼┼┼┤ 1L 6s (onyx) 6, 1 6:1
├────┼┼┼┼┼┼┼┤ 1L 7s (antipine) 5, 1 5:1
├───┼┼┼┼┼┼┼┼┤ 1L 8s (antisubneutralic) 4, 1 4:1
├──┼┼┼┼┼┼┼┼┼┤ 1L 9s (antisinatonic) 3, 1 3:1
├─┼┼┼┼┼┼┼┼┼┼┤ 1L 10s 2, 1 2:1
├┼┼┼┼┼┼┼┼┼┼┼┤ 12edo 1, 1 1:1


Multi-period MOS scales
2 periods

Generators 4\12 and 2\12
Step visualization MOS (name) Step sizes Step ratio
├───┼─┼───┼─┤ 2L 2s 4, 2 2:1
├─┼─┼─┼─┼─┼─┤ 6edo 2, 2 1:1
Generators 5\12 and 1\12
Step visualization MOS (name) Step sizes Step ratio
├────┼┼────┼┤ 2L 2s 5, 1 5:1
├───┼┼┼───┼┼┤ 2L 4s (malic) 4, 1 4:1
├──┼┼┼┼──┼┼┼┤ 2L 6s (subaric) 3, 1 3:1
├─┼┼┼┼┼─┼┼┼┼┤ 2L 8s (jaric) 2, 1 2:1
├┼┼┼┼┼┼┼┼┼┼┼┤ 12edo 1, 1 1:1


3 periods

Generators 3\12 and 1\12
Step visualization MOS (name) Step sizes Step ratio
├──┼┼──┼┼──┼┤ 3L 3s (triwood) 3, 1 3:1
├─┼┼┼─┼┼┼─┼┼┤ 3L 6s (tcherepnin) 2, 1 2:1
├┼┼┼┼┼┼┼┼┼┼┼┤ 12edo 1, 1 1:1


4 periods

Generators 2\12 and 1\12
Step visualization MOS (name) Step sizes Step ratio
├─┼┼─┼┼─┼┼─┼┤ 4L 4s (tetrawood) 2, 1 2:1
├┼┼┼┼┼┼┼┼┼┼┼┤ 12edo 1, 1 1:1


13edo

These are all moment of symmetry scales in 13edo.
Single-period MOS scales

Generators 7\13 and 6\13
Step visualization MOS (name) Step sizes Step ratio
├──────┼─────┤ 1L 1s 7, 6 7:6
├┼─────┼─────┤ 2L 1s 6, 1 6:1
├┼┼────┼┼────┤ 2L 3s 5, 1 5:1
├┼┼┼───┼┼┼───┤ 2L 5s (antidiatonic) 4, 1 4:1
├┼┼┼┼──┼┼┼┼──┤ 2L 7s (balzano) 3, 1 3:1
├┼┼┼┼┼─┼┼┼┼┼─┤ 2L 9s 2, 1 2:1
├┼┼┼┼┼┼┼┼┼┼┼┼┤ 13edo 1, 1 1:1
Generators 8\13 and 5\13
Step visualization MOS (name) Step sizes Step ratio
├───────┼────┤ 1L 1s 8, 5 8:5
├──┼────┼────┤ 2L 1s 5, 3 5:3
├──┼──┼─┼──┼─┤ 3L 2s 3, 2 3:2
├┼─┼┼─┼─┼┼─┼─┤ 5L 3s (oneirotonic) 2, 1 2:1
├┼┼┼┼┼┼┼┼┼┼┼┼┤ 13edo 1, 1 1:1
Generators 9\13 and 4\13
Step visualization MOS (name) Step sizes Step ratio
├────────┼───┤ 1L 1s 9, 4 9:4
├────┼───┼───┤ 1L 2s 5, 4 5:4
├┼───┼───┼───┤ 3L 1s 4, 1 4:1
├┼┼──┼┼──┼┼──┤ 3L 4s (mosh) 3, 1 3:1
├┼┼┼─┼┼┼─┼┼┼─┤ 3L 7s (sephiroid) 2, 1 2:1
├┼┼┼┼┼┼┼┼┼┼┼┼┤ 13edo 1, 1 1:1
Generators 10\13 and 3\13
Step visualization MOS (name) Step sizes Step ratio
├─────────┼──┤ 1L 1s 10, 3 10:3
├──────┼──┼──┤ 1L 2s 7, 3 7:3
├───┼──┼──┼──┤ 1L 3s 4, 3 4:3
├┼──┼──┼──┼──┤ 4L 1s 3, 1 3:1
├┼┼─┼┼─┼┼─┼┼─┤ 4L 5s (gramitonic) 2, 1 2:1
├┼┼┼┼┼┼┼┼┼┼┼┼┤ 13edo 1, 1 1:1
Generators 11\13 and 2\13
Step visualization MOS (name) Step sizes Step ratio
├──────────┼─┤ 1L 1s 11, 2 11:2
├────────┼─┼─┤ 1L 2s 9, 2 9:2
├──────┼─┼─┼─┤ 1L 3s 7, 2 7:2
├────┼─┼─┼─┼─┤ 1L 4s 5, 2 5:2
├──┼─┼─┼─┼─┼─┤ 1L 5s (antimachinoid) 3, 2 3:2
├┼─┼─┼─┼─┼─┼─┤ 6L 1s (archaeotonic) 2, 1 2:1
├┼┼┼┼┼┼┼┼┼┼┼┼┤ 13edo 1, 1 1:1
Generators 12\13 and 1\13
Step visualization MOS (name) Step sizes Step ratio
├───────────┼┤ 1L 1s 12, 1 12:1
├──────────┼┼┤ 1L 2s 11, 1 11:1
├─────────┼┼┼┤ 1L 3s 10, 1 10:1
├────────┼┼┼┼┤ 1L 4s 9, 1 9:1
├───────┼┼┼┼┼┤ 1L 5s (antimachinoid) 8, 1 8:1
├──────┼┼┼┼┼┼┤ 1L 6s (onyx) 7, 1 7:1
├─────┼┼┼┼┼┼┼┤ 1L 7s (antipine) 6, 1 6:1
├────┼┼┼┼┼┼┼┼┤ 1L 8s (antisubneutralic) 5, 1 5:1
├───┼┼┼┼┼┼┼┼┼┤ 1L 9s (antisinatonic) 4, 1 4:1
├──┼┼┼┼┼┼┼┼┼┼┤ 1L 10s 3, 1 3:1
├─┼┼┼┼┼┼┼┼┼┼┼┤ 1L 11s 2, 1 2:1
├┼┼┼┼┼┼┼┼┼┼┼┼┤ 13edo 1, 1 1:1