718edo

From Xenharmonic Wiki
Revision as of 09:04, 20 May 2023 by FloraC (talk | contribs) (Created page with "{{Infobox ET}} {{EDO intro|718}} == Theory == 718edo is distinctly consistent in the 23-odd-limit. It is closely related to 359edo, but the mapping differs for ...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search
← 717edo 718edo 719edo →
Prime factorization 2 × 359
Step size 1.67131 ¢ 
Fifth 420\718 (701.95 ¢) (→ 210\359)
Semitones (A1:m2) 68:54 (113.6 ¢ : 90.25 ¢)
Consistency limit 23
Distinct consistency limit 23

Template:EDO intro

Theory

718edo is distinctly consistent in the 23-odd-limit. It is closely related to 359edo, but the mapping differs for 5, 13, 17 and 31.

As does 359et, 718et tempers out the 359-comma in the 3-limit, rendering a very accurate perfect fifth. In the 5-limit it tempers out the gammic comma, [-29 -11 20, and the monzisma, [54 -37 2. In the 7-limit it tempers out 4375/4374; in the 11-limit 3025/3024, 9801/9800 and 131072/130977; in the 13-limit 1716/1715, 2080/2079, 4096/4095, 4225/4224, 6656/6655 and 10648/10647; in the 17-limit 1275/1274, 2025/2023; in the 19-limit 2432/2431, 4200/4199 and 5985/5984; and in the 23-limit 2024/2023, 2025/2024, 2185/2184, 3060/3059. It supports gammic, monzismic and abigail.

Prime harmonics

Approximation of prime harmonics in 718edo
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) +0.000 -0.005 -0.241 +0.533 +0.214 +0.141 +0.337 -0.020 +0.138 -0.051 -0.189
Relative (%) +0.0 -0.3 -14.4 +31.9 +12.8 +8.4 +20.2 -1.2 +8.3 -3.0 -11.3
Steps
(reduced)
718
(0)
1138
(420)
1667
(231)
2016
(580)
2484
(330)
2657
(503)
2935
(63)
3050
(178)
3248
(376)
3488
(616)
3557
(685)

Subsets and supersets

718 contains 2edo and 359edo as subsets.

Regular temperament properties

Subgroup Comma List Mapping Optimal
8ve Stretch (¢)
Tuning Error
Absolute (¢) Relative (%)
2.3.5 [-29 -11 20, [54 -37 2 [718 1138 1667]] +0.0357 0.0482 2.89
2.3.5.7 4375/4374, 40500000/40353607, [31 -6 -2 -6 [718 1138 1667 2016]] -0.0207 0.1063 6.36
2.3.5.7.11 3025/3024, 4375/4374, 131072/130977, 40500000/40353607 [718 1138 1667 2016 2484]] -0.0290 0.0965 5.77
2.3.5.7.11.13 1716/1715, 2080/2079, 3025/3024, 4096/4095, 7031250/7014007 [718 1138 1667 2016 2484 2657]] -0.0305 0.0881 5.27

Rank-2 temperaments

Table of rank-2 temperaments by generator
Periods
per Octave
Generator
(Reduced)
Cents
(Reduced)
Associated
Ratio
Temperaments
1 21\718 35.10 234375/229376 Gammic
1 249\718 249.03 [-27 11 3 1 Monzismic
2 125\718 208.91 44/39 Abigail