121edo

Revision as of 12:47, 7 April 2023 by Eliora (talk | contribs) (edo intro, remove mmtmism as there's little to no recorded usage of number 121 as a subdivision unit in human history)
← 120edo 121edo 122edo →
Prime factorization 112
Step size 9.91736 ¢ 
Fifth 71\121 (704.132 ¢)
Semitones (A1:m2) 13:8 (128.9 ¢ : 79.34 ¢)
Consistency limit 19
Distinct consistency limit 15

Template:EDO intro

Theory

121EDO has a distinctly sharp tendency, in that the odd primes from 3 to 19 all have sharp tunings. It tempers out 15625/15552 in the 5-limit; 4000/3969, 6144/6125, 10976/10935 in the 7-limit; 540/539, 896/891 and 1375/1372 in the 11-limit; 325/324, 352/351, 364/363 and 625/624 in the 13-limit; 256/255, 375/374 and 442/441 in the 17-limit; 190/189 and 361/360 in the 19-limit. It also serves as the optimal patent val for 13-limit grendel temperament. It is consistent through to the 19-odd-limit and uniquely consistent to the 15-odd-limit.

Because it tempers out 540/539 it allows swetismic chords, because it tempers out 325/324 it allows marveltwin chords, because it tempers out 640/637 it allows huntmic chords, because it tempers out 352/351 it allows minthmic chords, because it tempers out 364/363 it allows gentle chords, because it tempers out 676/675 it allows island chords and because it tempers out 1575/1573 it allows the nicolic tetrad. That makes for a very flexible system, and since this suite of commas defines 13-limit 121ET, it is a system only associated with 121.

Prime harmonics

Script error: No such module "primes_in_edo".

Regular temperament properties

Subgroup Comma list Mapping Optimal
8ve stretch (¢)
Tuning error
Absolute (¢) Relative (%)
2.3 [192 -121 [121 192]] -0.687 0.687 6.93
2.3.5 15625/15552, [31 -21 1 [121 192 281]] -0.524 0.606 6.11
2.3.5.7 4000/3969, 6144/6125, 10976/10935 [121 192 281 340]] -0.667 0.580 5.85
2.3.5.7.11 540/539, 896/891, 1375/1372, 4375/4356 [121 192 281 340 419]] -0.768 0.556 5.61
2.3.5.7.11.13 325/324, 352/351, 364/363, 540/539, 625/624 [121 192 281 340 419 448]] -0.750 0.510 5.14
2.3.5.7.11.13.17 256/255, 325/324, 352/351, 364/363, 375/374, 442/441 [121 192 281 340 419 448 495]] -0.787 0.480 4.85
2.3.5.7.11.13.17.19 190/189, 256/255, 325/324, 352/351, 361/360, 364/363, 375/374 [121 192 281 340 419 448 495 514]] -0.689 0.519 5.23

Rank-2 temperaments

Table of rank-2 temperaments by generator
Periods
per octave
Generator
(reduced)
Cents
(reduced)
Associated
ratio
Temperaments
1 9\121 89.26 21/20 Slithy
1 10\121 99.17 18/17 Quintupole
1 12\121 119.01 15/14 Subsedia
1 13\121 128.93 14/13 Tertiathirds
1 16\121 158.68 35/32 Hemikleismic
1 27\121 267.77 7/6 Hemimaquila
1 32\121 317.36 6/5 Hanson / metakleismic
1 39\121 386.78 5/4 Grendel
1 40\121 396.69 44/35 Squarschmidt
1 42\121 416.53 14/11 Sqrtphi
1 46\121 456.20 125/96 Qak
1 47\121 466.12 55/42 Hemiseptisix
1 48\121 476.03 21/16 Subfourth
1 50\121 495.87 4/3 Leapday / polypyth
1 51\121 505.79 75/56 Marfifths / marf / diatessic
1 54\121 535.54 512/375 Maquila
1 59\121 585.12 7/5 Pluto
11 50\121
(5\121)
495.87
(49.59)
4/3
(36/35)
Hendecatonic

13-limit detempering of 121ET

[100/99, 64/63, 50/49, 40/39, 36/35, 28/27, 25/24, 22/21, 21/20, 35/33, 16/15, 15/14, 14/13, 13/12, 12/11, 35/32, 11/10, 10/9, 39/35, 28/25, 9/8, 25/22, 8/7, 55/48, 15/13, 64/55, 7/6, 75/64, 13/11, 25/21, 105/88, 6/5, 63/52, 40/33, 11/9, 16/13, 26/21, 56/45, 5/4, 44/35, 63/50, 14/11, 32/25, 9/7, 35/27, 13/10, 55/42, 21/16, 33/25, 4/3, 75/56, 35/26, 27/20, 15/11, 48/35, 11/8, 18/13, 39/28, 7/5, 45/32, 64/45, 10/7, 56/39, 13/9, 16/11, 35/24, 22/15, 40/27, 49/33, 112/75, 3/2, 50/33, 32/21, 55/36, 20/13, 54/35, 14/9, 25/16, 11/7, 63/40, 35/22, 8/5, 45/28, 21/13, 13/8, 18/11, 33/20, 104/63, 5/3, 117/70, 42/25, 22/13, 75/44, 12/7, 55/32, 26/15, 96/55, 7/4, 44/25, 16/9, 25/14, 70/39, 9/5, 20/11, 64/35, 11/6, 24/13, 13/7, 28/15, 15/8, 49/26, 40/21, 21/11, 25/13, 27/14, 35/18, 39/20, 49/25, 63/32, 99/50, 2]

Miscellany

Since 121 is part of the Fibonacci sequence beginning with 5 and 12, 121edo closely approximates peppermint temperament. This makes it suitable for neo-Gothic tunings.