444edo
← 443edo | 444edo | 445edo → |
Theory
444et is only consistent to the 5-limit. Using the patent val, it tempers out 67108864/66976875, 29360128/29296875 and 250047/250000 in the 7-limit; 100663296/100656875, 2097152/2096325, 131072/130977, 172032/171875, 5632/5625, 47265625/47258883, 3025/3024, 160083/160000, 42592/42525, 391314/390625, 102487/102400, 322102/321489 and 1771561/1769472 in the 11-limit. It provides the optimal patent val for the magnesium temperament.
Odd harmonics
Harmonic | 3 | 5 | 7 | 9 | 11 | 13 | 15 | 17 | 19 | 21 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.75 | +0.17 | -1.26 | -1.21 | +0.03 | +0.01 | +0.92 | +0.45 | -0.22 | -0.51 | -1.25 |
Relative (%) | +27.7 | +6.4 | -46.6 | -44.7 | +1.2 | +0.5 | +34.1 | +16.6 | -8.0 | -18.9 | -46.2 | |
Steps (reduced) |
704 (260) |
1031 (143) |
1246 (358) |
1407 (75) |
1536 (204) |
1643 (311) |
1735 (403) |
1815 (39) |
1886 (110) |
1950 (174) |
2008 (232) |
Subsets and supersets
444 factors into 22 × 3 × 37, with subset edos 2, 3, 4, 6, 12, 37, 74, 111, 148, and 222. 1332edo, which triples it, gives a good correction to the harmonic 7.
Regular temperament properties
Subgroup | Comma List | Mapping | Optimal 8ve Stretch (¢) |
Tuning Error | |
---|---|---|---|---|---|
Absolute (¢) | Relative (%) | ||||
2.3 | [176 -111⟩ | [⟨444 704]] | -0.2359 | 0.2358 | 8.72 |
2.3.5 | [41 -20 -4⟩, [-29 -11 20⟩ | [⟨444 704 1031]] | -0.1821 | 0.2071 | 7.66 |
Rank-2 temperaments
Periods per 8ve |
Generator (reduced)* |
Cents (reduced)* |
Associated Ratio* |
Temperaments |
---|---|---|---|---|
1 | 13\444 | 35.14 | 1990656/1953125 | Gammic |
4 | 184\444 (38\444) |
497.30 (102.70) |
4/3 (35/33) |
Undim |
* octave-reduced form, reduced to the first half-octave, and minimal form in parentheses if it is distinct