315edo

From Xenharmonic Wiki
Revision as of 14:03, 5 March 2024 by Francium (talk | contribs) (Created page with "{{Infobox ET}} {{EDO intro|315}} == Theory == 315et is consistent to the 7-odd-limit, tempering out 2401/2400, 4375/4374 and 35595703125/35246833664. Using the 31...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search
← 314edo 315edo 316edo →
Prime factorization 32 × 5 × 7
Step size 3.80952 ¢ 
Fifth 184\315 (700.952 ¢)
Semitones (A1:m2) 28:25 (106.7 ¢ : 95.24 ¢)
Consistency limit 7
Distinct consistency limit 7

Template:EDO intro

Theory

315et is consistent to the 7-odd-limit, tempering out 2401/2400, 4375/4374 and 35595703125/35246833664. Using the 315e val in the 11-limit (315 ​499 ​731​ 884​ 1089])​, it tempers out 385/384, 1375/1372, 4375/4374 and 644204/643125, supporting beyla and ennealiminal.

Odd harmonics

Approximation of odd harmonics in 315edo
Harmonic 3 5 7 9 11 13 15 17 19 21 23
Error Absolute (¢) -1.00 -1.55 -1.21 +1.80 +1.06 +1.38 +1.26 +1.71 -0.37 +1.60 +0.30
Relative (%) -26.3 -40.7 -31.7 +47.4 +27.9 +36.1 +32.9 +44.9 -9.7 +42.0 +7.8
Steps
(reduced)
499
(184)
731
(101)
884
(254)
999
(54)
1090
(145)
1166
(221)
1231
(286)
1288
(28)
1338
(78)
1384
(124)
1425
(165)

Subsets and supersets

315 factors into 32 × 5 × 7, with subset edos 3, 5, 7, 9, 15, 21, 35, 45, 63, and 105. 945edo, which triples it, gives a good correction to the harmonic 11.

Regular temperament properties

Subgroup Comma List Mapping Optimal
8ve Stretch (¢)
Tuning Error
Absolute (¢) Relative (%)
2.3 [-499 315 [315 499]] 0.3163 0.3164 8.31
2.3.5 [-27 -2 13, [-28 25 -5 [315 499 731]] 0.4337 0.3071 8.06
2.3.5.7 2401/2400, 4375/4374, 35595703125/35246833664 [315 499 731 884]] 0.4328 0.2659 6.98

Rank-2 temperaments

Table of rank-2 temperaments by generator
Periods
per 8ve
Generator* Cents* Associated
Ratio*
Temperaments
1 107\315 407.62 15625/12288 Ditonic
5 131\315
(5\315)
499.05
(19.05)
4/3
(81/80)
Pental
9 83\315
(13\315)
316.19
(49.52)
6/5
(36/35)
Ennealimmal

* octave-reduced form, reduced to the first half-octave, and minimal form in parentheses if it is distinct