130edo

From Xenharmonic Wiki
Revision as of 10:42, 30 June 2021 by FloraC (talk | contribs) (Move temperament generator info to RTT section and add ratios instead)
Jump to navigation Jump to search

130edo divides the octave into 130 parts of size 9.231 cents each.

Theory

130edo is a zeta peak edo, a zeta peak integer edo, and a zeta integral edo but not a gap edo. It can be used to tune a variety of temperaments, including hemiwürschmidt, sesquiquartififths, harry and hemischis. It also can be used to tune the rank-three temperament jove, tempering out 243/242 and 441/440, plus 364/363 for the 13-limit and 595/594 for the 17-limit. It gives the optimal patent val for 11-limit hemiwürschmidt and sesquart and 13-limit harry temperaments.

Prime harmonics

Script error: No such module "primes_in_edo".

Intervals

Degree Cents Approximate Ratios
0 0.000 1/1
1 9.231 126/125, 225/224
2 18.462 81/80
3 27.692 64/63
4 36.923 49/48, 50/49
5 46.154 36/35
6 55.385 33/32
7 64.615 28/27, 27/26
8 73.846 25/24
9 83.077 21/20, 22/21
10 92.308 135/128
11 101.538 35/33
12 110.769 16/15
13 120.000 15/14
14 129.231 14/13
15 138.462 13/12
16 147.692 12/11
17 156.923 35/32
18 166.154 11/10
19 175.385 72/65
20 184.615 10/9
21 193.846 28/25
22 203.077 9/8
23 212.308 44/39
24 221.538 25/22
25 230.769 8/7
26 240.000 55/48
27 249.231 15/13
28 258.462 64/55
29 267.692 7/6
30 276.923 75/64
31 286.154 13/11
32 295.385 32/27
33 304.615 25/21
34 313.846 6/5
35 323.077 65/54
36 332.308 40/33
37 341.538 39/32
38 350.769 11/9, 27/22
39 360.000 16/13
40 369.231 26/21
41 378.462 56/45
42 387.692 5/4
43 396.923 63/50
44 406.154 81/64
45 415.385 14/11
46 424.615 32/25
47 433.846 9/7
48 443.077 128/99
49 452.308 13/10
50 461.538 72/55
51 470.769 21/16
52 480.000 33/25
53 489.231 250/189
54 498.462 4/3
55 507.692 75/56
56 516.923 27/20
57 526.154 65/48
58 535.385 15/11
59 544.615 48/35
60 553.846 11/8
61 563.077 18/13
62 572.308 25/18
63 581.538 7/5
64 590.769 45/32
65 600.000 99/70, 140/99

Regular temperament properties

Commas

7-limit commas: 2401/2400, 3136/3125, 19683/19600

11-limit commas: 441/440, 540/539, 3136/3125, 4000/3993

13-limit commas: 3136/3125, 243/242, 441/440, 351/350, 364/363

17-limit commas: 221/220, 364/363, 442/441, 595/594, 1275/1274, 4913/4875

Rank-2 temperaments

Table of rank-2 temperaments by generator
Periods
per octave
Generator
(reduced)
Cents
(reduced)
Associated
ratio
Temperaments
1 19\130 175.38 72/65 Sesquiquartififths / sesquart
1 21\130 193.85 28/25 Didacus / hemiwürschmidt
1 27\130 249.23 15/13 Hemischis
2 9\130 83.08 21/20 Harry

Scales

14-tone temperament of "Narrative Wars"
as an example of using 130-EDO:
Step Cents Distance to the nearest JI interval
(selected ratios)
13 (13/130) 120.000 15/14 (+0.557 ¢)
7 (20/130) 184.615 10/9 (+2.211 ¢)
9 (29/130) 267.692 7/6 (+0,821 ¢)
9 (38/130) 350.769 11/9 (+3.361 ¢)
9 (47/130) 433.846 9/7 (-1.238 ¢)
7 (54/130) 498.462 4/3 (+0.417 ¢)
13 (67/130) 618.462 10/7 (+0.974 ¢)
9 (76/130) 701.538 3/2 (-0.417 ¢)
7 (83/130) 766.154 14/9 (+1.238 ¢)
13 (96/130) 886.154 5/3 (+1.795 ¢)
5 (101/130) 932.308 12/7 (-0.821 ¢)
13 (114/130) 1052.308 11/6 (+2.945 ¢)
7 (121/130) 1116.923 21/11 (-2.540 ¢)
9 (130/130) 1200.000 Octave (2/1, ±0 ¢)

Music