289edo

Revision as of 07:44, 15 January 2023 by FloraC (talk | contribs) (Rework)
← 288edo 289edo 290edo →
Prime factorization 172
Step size 4.15225 ¢ 
Fifth 169\289 (701.73 ¢)
Semitones (A1:m2) 27:22 (112.1 ¢ : 91.35 ¢)
Consistency limit 9
Distinct consistency limit 9

Template:EDO intro

Theory

289edo has decent 11- and 13-limit interpretations despite not being consistent. It tempers out the schisma, 32805/32768 in the 5-limit; 4375/4374 and 65625/65536 in the 7-limit; 441/440 and 4000/3993 in the 11-limit; and 364/363, 676/675, 1001/1000, 1575/1573 and 2080/2079 in the 13-limit.

It is the optimal patent val for the 13-limit rank-5 temperament tempering out 364/363, and the 13-limit history temperament, which tempers out 364/363, 441/440 and 676/675. It provides a good tuning for the 11-limit version also. It is also the optimal patent val for sextilififths in both the 11- and 13-limit, and for quintaschis in both the 11- and 13-limit.

Prime harmonics

Approximation of prime harmonics in 289edo
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) +0.00 -0.22 -0.15 -1.35 +0.93 -1.77 -1.15 +1.45 -1.28 +0.18 +0.99
Relative (%) +0.0 -5.4 -3.7 -32.6 +22.4 -42.7 -27.7 +34.9 -30.9 +4.3 +23.7
Steps
(reduced)
289
(0)
458
(169)
671
(93)
811
(233)
1000
(133)
1069
(202)
1181
(25)
1228
(72)
1307
(151)
1404
(248)
1432
(276)

Divisors

289 is 17 squared. In light of containing 17edo as a subset, 289edo supports the chlorine temperament, which tempers out the septendecima [-52 -17 34 and the ragisma 4375/4374.

Regular temperament properties

Subgroup Comma List Mapping Optimal
8ve Stretch (¢)
Tuning Error
Absolute (¢) Relative (%)
2.3 [-458 289 [289 458]] +0.0709 0.0710 1.71
2.3.5 32805/32768, [7 41 -31 [289 458 671]] +0.0695 0.0580 1.40
2.3.5.7 4375/4374, 32805/32768, 235298/234375 [289 458 671 811]] +0.1725 0.1854 4.46
2.3.5.7.11 441/440, 4000/3993, 4375/4374, 32805/32768 [289 458 671 811 1000]] +0.0841 0.2423 5.83
2.3.5.7.11.13 364/363, 441/440, 676/675, 4375/4374, 19773/19712 [289 458 671 811 1000 1069]] +0.1500 0.2657 6.40

Rank-2 temperaments

Periods
per 8ve
Generator
(Reduced)
Cents
(Reduced)
Associated
Ratio
Temperaments
1 4\289 16.61 100/99 Quincy
1 13\289 53.98 33/32 Tridecafifths
1 20\289 83.04 21/20 Sextilififths
1 24\289 99.65 18/17 Quintaschis
1 76\289 315.57 6/5 Acrokleismic
1 86\289 357.09 768/625 Dodifo
1 108\289 448.44 35/27 Semidimfourth
1 120\289 498.27 4/3 Pontiac
1 135\289 560.55 864/625 Whoosh
17 93\289
(8\289)
386.16
(33.22)
[-23 5 9 -2
(100352/98415)
Chlorine