1920edo: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Godtone (talk | contribs)
m seems to make sense in at least 43-limit if not barely also the 47-limit
Eliora (talk | contribs)
No edit summary
Line 1: Line 1:
{{Infobox ET}}
{{Infobox ET}}
The '''1920 division''' divides the octave into 1920 equal parts of exactly 0.625 cents each. It is distinctly [[consistent]] through the 25-odd-limit, and in terms of 23-limit [[Tenney-Euclidean temperament measures #TE simple badness|relative error]], only [[1578edo|1578]] and [[1889edo|1889]] are both smaller and with a lower relative error. In the 29-limit, only 1578 beats it, and in the 31-, 37-, 41-, 43- and 47-limit, nothing beats it. Because of this and because it is a very composite number divisible by 12, it is another candidate for [[interval size measure]].
{{EDO intro|1920}}
== Theory ==
It is distinctly [[consistent]] through the 25-odd-limit, and in terms of 23-limit [[Tenney-Euclidean temperament measures #TE simple badness|relative error]], only [[1578edo|1578]] and [[1889edo|1889]] are both smaller and with a lower relative error. In the 29-limit, only 1578 beats it, and in the 31-, 37-, 41-, 43- and 47-limit, nothing beats it. Because of this and because it is a very composite number divisible by 12, it is another candidate for [[interval size measure]].


=== Prime harmonics ===
=== Prime harmonics ===

Revision as of 15:03, 8 December 2022

← 1919edo 1920edo 1921edo →
Prime factorization 27 × 3 × 5
Step size 0.625 ¢ 
Fifth 1123\1920 (701.875 ¢)
Semitones (A1:m2) 181:145 (113.1 ¢ : 90.63 ¢)
Consistency limit 25
Distinct consistency limit 25

Template:EDO intro

Theory

It is distinctly consistent through the 25-odd-limit, and in terms of 23-limit relative error, only 1578 and 1889 are both smaller and with a lower relative error. In the 29-limit, only 1578 beats it, and in the 31-, 37-, 41-, 43- and 47-limit, nothing beats it. Because of this and because it is a very composite number divisible by 12, it is another candidate for interval size measure.

Prime harmonics

Approximation of prime harmonics in 1920edo
Harmonic 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47
Error Absolute (¢) +0.000 -0.080 -0.064 -0.076 -0.068 +0.097 +0.045 -0.013 -0.149 -0.202 -0.036 -0.094 -0.312 -0.268 +0.118
Relative (%) +0.0 -12.8 -10.2 -12.1 -10.9 +15.6 +7.1 -2.1 -23.9 -32.4 -5.7 -15.0 -50.0 -42.8 +18.9
Steps
(reduced)
1920
(0)
3043
(1123)
4458
(618)
5390
(1550)
6642
(882)
7105
(1345)
7848
(168)
8156
(476)
8685
(1005)
9327
(1647)
9512
(1832)
10002
(402)
10286
(686)
10418
(818)
10665
(1065)

Miscellany

1920 = 27 × 3 × 5; some of its divisors are 10, 12, 15, 16, 24, 60, 80, 96, 128, 240, 320 and 640.