176edo: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
+intro and prime harmonics table
+RTT table
Line 2: Line 2:


== Theory ==
== Theory ==
176edo is [[consistent]] to the [[11-odd-limit]], tempering out 78732/78125 ([[sensipent comma]]) and 2199023255552/2179240250625 ([[undim comma]]) in the 5-limit; [[6144/6125]], [[10976/10935]], and 50421/50000 in the 7-limit; [[441/440]], 3388/3375, 6912/6875, and 8019/8000 in the 11-limit, supporting the [[bison]] temperament and the [[commatic]] temperament.
176edo is [[consistent]] to the [[11-odd-limit]], tempering out 78732/78125 ([[sensipent comma]]) and {{monzo| 41 -20 -4 }} ([[undim comma]]) in the 5-limit; [[6144/6125]], [[10976/10935]], and 50421/50000 in the 7-limit; [[441/440]], 3388/3375, 6912/6875, and [[8019/8000]] in the 11-limit, supporting the [[bison]] temperament and the [[commatic]] temperament.


=== Prime harmonics ===
=== Prime harmonics ===
{{Primes in edo|176}}
{{Primes in edo|176}}
== Regular temperament properties ==
{| class="wikitable center-4 center-5 center-6"
! rowspan="2" | Subgroup
! rowspan="2" | [[Comma list]]
! rowspan="2" | [[Mapping]]
! rowspan="2" | Optimal<br>8ve stretch (¢)
! colspan="2" | Tuning error
|-
! [[TE error|Absolute]] (¢)
! [[TE simple badness|Relative]] (%)
|-
| 2.3
| {{monzo| 279 -176 }}
| [{{val| 176 279 }}]
| -0.100
| 0.100
| 1.47
|-
| 2.3.5
| 78732/78125, {{monzo| 41 -20 -4 }}
| [{{val| 176 279 409 }}]
| -0.400
| 0.432
| 6.34
|-
| 2.3.5.7
| 6144/6125, 10976/10935, 50421/50000
| [{{val| 176 279 409 494 }}]
| -0.243
| 0.463
| 6.79
|-
| 2.3.5.7.11
| 441/440, 3388/3375, 6144/6125, 8019/8000
| [{{val| 176 279 409 494 609 }}]
| -0.250
| 0.414
| 6.08
|-
| 2.3.5.7.11.13
| 351/350, 364/363, 441/440, 2197/2187, 3146/3125
| [{{val| 176 279 409 494 609 651 }}]
| -0.123
| 0.473
| 6.93
|}
=== Rank-2 temperaments ===
{| class="wikitable center-all left-5"
|+Table of rank-2 temperaments by generator
! Periods<br>per octave
! Generator<br>(reduced)
! Cents<br>(reduced)
! Associated<br>ratio
! Temperaments
|-
| 1
| 17\176
| 115.91
| 77/72
| [[Countermiracle]] / countermiraculous (176f) / counterbenediction (176)
|-
| 1
| 35\176
| 238.64
| 147/128
| [[Tokko]]
|-
| 1
| 65\176
| 443.18
| 162/125
| [[Sensipent]]
|-
| 1
| 73\176
| 497.73
| 4/3
| [[Gary]] / [[cotoneum]]
|-
| 1
| 83\176
| 565.91
| 13/9
| [[Tricot]] / [[trident]]
|-
| 2
| 23\176
| 20.45
| 81/80
| [[Commatic]] (176f)
|-
| 2
| 23\176
| 156.82
| 35/32
| [[Bison]]
|-
| 8
| 83\176<br>(5\176)
| 565.91<br>(34.09)
| 168/121<br>(55/54)
| [[Octowerck]] (176f)
|-
| 11
| 73\176<br>(7\176)
| 497.73<br>(47.73)
| 4/3<br>(36/35)
| [[Hendecatonic]]
|-
| 22
| 73\176<br>(1\176)
| 497.73<br>(6.82)
| 4/3<br>(385/384)
| [[Icosidillic]]
|}


[[Category:Equal divisions of the octave]]
[[Category:Equal divisions of the octave]]

Revision as of 12:41, 7 September 2021

The 176 equal divisions of the octave (176edo), or the 176(-tone) equal temperament (176tet, 176et) when viewed from a regular temperament perspective, is the equal division of the octave into 176 parts of 6.8182 cents each.

Theory

176edo is consistent to the 11-odd-limit, tempering out 78732/78125 (sensipent comma) and [41 -20 -4 (undim comma) in the 5-limit; 6144/6125, 10976/10935, and 50421/50000 in the 7-limit; 441/440, 3388/3375, 6912/6875, and 8019/8000 in the 11-limit, supporting the bison temperament and the commatic temperament.

Prime harmonics

Script error: No such module "primes_in_edo".

Regular temperament properties

Subgroup Comma list Mapping Optimal
8ve stretch (¢)
Tuning error
Absolute (¢) Relative (%)
2.3 [279 -176 [176 279]] -0.100 0.100 1.47
2.3.5 78732/78125, [41 -20 -4 [176 279 409]] -0.400 0.432 6.34
2.3.5.7 6144/6125, 10976/10935, 50421/50000 [176 279 409 494]] -0.243 0.463 6.79
2.3.5.7.11 441/440, 3388/3375, 6144/6125, 8019/8000 [176 279 409 494 609]] -0.250 0.414 6.08
2.3.5.7.11.13 351/350, 364/363, 441/440, 2197/2187, 3146/3125 [176 279 409 494 609 651]] -0.123 0.473 6.93

Rank-2 temperaments

Table of rank-2 temperaments by generator
Periods
per octave
Generator
(reduced)
Cents
(reduced)
Associated
ratio
Temperaments
1 17\176 115.91 77/72 Countermiracle / countermiraculous (176f) / counterbenediction (176)
1 35\176 238.64 147/128 Tokko
1 65\176 443.18 162/125 Sensipent
1 73\176 497.73 4/3 Gary / cotoneum
1 83\176 565.91 13/9 Tricot / trident
2 23\176 20.45 81/80 Commatic (176f)
2 23\176 156.82 35/32 Bison
8 83\176
(5\176)
565.91
(34.09)
168/121
(55/54)
Octowerck (176f)
11 73\176
(7\176)
497.73
(47.73)
4/3
(36/35)
Hendecatonic
22 73\176
(1\176)
497.73
(6.82)
4/3
(385/384)
Icosidillic