130edo: Difference between revisions
m Cleanup |
Move temperament generator info to RTT section and add ratios instead |
||
Line 13: | Line 13: | ||
! Degree | ! Degree | ||
! Cents | ! Cents | ||
! | ! Approximate Ratios | ||
|- | |- | ||
| 0 | | 0 | ||
| 0.000 | | 0.000 | ||
| | | 1/1 | ||
|- | |- | ||
| 1 | | 1 | ||
| 9.231 | | 9.231 | ||
| | | 126/125, 225/224 | ||
|- | |- | ||
| 2 | | 2 | ||
| 18.462 | | 18.462 | ||
| | | 81/80 | ||
|- | |- | ||
| 3 | | 3 | ||
| 27.692 | | 27.692 | ||
| | | 64/63 | ||
|- | |- | ||
| 4 | | 4 | ||
| 36.923 | | 36.923 | ||
| | | 49/48, 50/49 | ||
|- | |- | ||
| 5 | | 5 | ||
| 46.154 | | 46.154 | ||
| | | 36/35 | ||
|- | |- | ||
| 6 | | 6 | ||
| 55.385 | | 55.385 | ||
| | | 33/32 | ||
|- | |- | ||
| 7 | | 7 | ||
| 64.615 | | 64.615 | ||
| | | 28/27, 27/26 | ||
|- | |- | ||
| 8 | | 8 | ||
| 73.846 | | 73.846 | ||
| | | 25/24 | ||
|- | |- | ||
| 9 | | 9 | ||
| 83.077 | | 83.077 | ||
| | | 21/20, 22/21 | ||
|- | |- | ||
| 10 | | 10 | ||
| 92.308 | | 92.308 | ||
| | | 135/128 | ||
|- | |- | ||
| 11 | | 11 | ||
| 101.538 | | 101.538 | ||
| | | 35/33 | ||
|- | |- | ||
| 12 | | 12 | ||
| 110.769 | | 110.769 | ||
| | | 16/15 | ||
|- | |- | ||
| 13 | | 13 | ||
| 120.000 | | 120.000 | ||
| | | 15/14 | ||
|- | |- | ||
| 14 | | 14 | ||
| 129.231 | | 129.231 | ||
| | | 14/13 | ||
|- | |- | ||
| 15 | | 15 | ||
| 138.462 | | 138.462 | ||
| | | 13/12 | ||
|- | |- | ||
| 16 | | 16 | ||
| 147.692 | | 147.692 | ||
| | | 12/11 | ||
|- | |- | ||
| 17 | | 17 | ||
| 156.923 | | 156.923 | ||
| | | 35/32 | ||
|- | |- | ||
| 18 | | 18 | ||
| 166.154 | | 166.154 | ||
| | | 11/10 | ||
|- | |- | ||
| 19 | | 19 | ||
| 175.385 | | 175.385 | ||
| | | 72/65 | ||
|- | |- | ||
| 20 | | 20 | ||
| 184.615 | | 184.615 | ||
| | | 10/9 | ||
|- | |- | ||
| 21 | | 21 | ||
| 193.846 | | 193.846 | ||
| | | 28/25 | ||
|- | |- | ||
| 22 | | 22 | ||
| 203.077 | | 203.077 | ||
| | | 9/8 | ||
|- | |- | ||
| 23 | | 23 | ||
| 212.308 | | 212.308 | ||
| | | 44/39 | ||
|- | |- | ||
| 24 | | 24 | ||
| 221.538 | | 221.538 | ||
| | | 25/22 | ||
|- | |- | ||
| 25 | | 25 | ||
| 230.769 | | 230.769 | ||
| | | 8/7 | ||
|- | |- | ||
| 26 | | 26 | ||
| 240.000 | | 240.000 | ||
| | | 55/48 | ||
|- | |- | ||
| 27 | | 27 | ||
| 249.231 | | 249.231 | ||
| | | 15/13 | ||
|- | |- | ||
| 28 | | 28 | ||
| 258.462 | | 258.462 | ||
| | | 64/55 | ||
|- | |- | ||
| 29 | | 29 | ||
| 267.692 | | 267.692 | ||
| | | 7/6 | ||
|- | |- | ||
| 30 | | 30 | ||
| 276.923 | | 276.923 | ||
| | | 75/64 | ||
|- | |- | ||
| 31 | | 31 | ||
| 286.154 | | 286.154 | ||
| | | 13/11 | ||
|- | |- | ||
| 32 | | 32 | ||
| 295.385 | | 295.385 | ||
| | | 32/27 | ||
|- | |- | ||
| 33 | | 33 | ||
| 304.615 | | 304.615 | ||
| | | 25/21 | ||
|- | |- | ||
| 34 | | 34 | ||
| 313.846 | | 313.846 | ||
| | | 6/5 | ||
|- | |- | ||
| 35 | | 35 | ||
| 323.077 | | 323.077 | ||
| | | 65/54 | ||
|- | |- | ||
| 36 | | 36 | ||
| 332.308 | | 332.308 | ||
| | | 40/33 | ||
|- | |- | ||
| 37 | | 37 | ||
| 341.538 | | 341.538 | ||
| | | 39/32 | ||
|- | |- | ||
| 38 | | 38 | ||
| 350.769 | | 350.769 | ||
| | | 11/9, 27/22 | ||
|- | |- | ||
| 39 | | 39 | ||
| 360.000 | | 360.000 | ||
| | | 16/13 | ||
|- | |- | ||
| 40 | | 40 | ||
| 369.231 | | 369.231 | ||
| | | 26/21 | ||
|- | |- | ||
| 41 | | 41 | ||
| 378.462 | | 378.462 | ||
| | | 56/45 | ||
|- | |- | ||
| 42 | | 42 | ||
| 387.692 | | 387.692 | ||
| | | 5/4 | ||
|- | |- | ||
| 43 | | 43 | ||
| 396.923 | | 396.923 | ||
| | | 63/50 | ||
|- | |- | ||
| 44 | | 44 | ||
| 406.154 | | 406.154 | ||
| | | 81/64 | ||
|- | |- | ||
| 45 | | 45 | ||
| 415.385 | | 415.385 | ||
| | | 14/11 | ||
|- | |- | ||
| 46 | | 46 | ||
| 424.615 | | 424.615 | ||
| | | 32/25 | ||
|- | |- | ||
| 47 | | 47 | ||
| 433.846 | | 433.846 | ||
| | | 9/7 | ||
|- | |- | ||
| 48 | | 48 | ||
| 443.077 | | 443.077 | ||
| | | 128/99 | ||
|- | |- | ||
| 49 | | 49 | ||
| 452.308 | | 452.308 | ||
| | | 13/10 | ||
|- | |- | ||
| 50 | | 50 | ||
| 461.538 | | 461.538 | ||
| | | 72/55 | ||
|- | |- | ||
| 51 | | 51 | ||
| 470.769 | | 470.769 | ||
| | | 21/16 | ||
|- | |- | ||
| 52 | | 52 | ||
| 480.000 | | 480.000 | ||
| | | 33/25 | ||
|- | |- | ||
| 53 | | 53 | ||
| 489.231 | | 489.231 | ||
| | | 250/189 | ||
|- | |- | ||
| 54 | | 54 | ||
| 498.462 | | 498.462 | ||
| | | 4/3 | ||
|- | |- | ||
| 55 | | 55 | ||
| 507.692 | | 507.692 | ||
| | | 75/56 | ||
|- | |- | ||
| 56 | | 56 | ||
| 516.923 | | 516.923 | ||
| | | 27/20 | ||
|- | |- | ||
| 57 | | 57 | ||
| 526.154 | | 526.154 | ||
| | | 65/48 | ||
|- | |- | ||
| 58 | | 58 | ||
| 535.385 | | 535.385 | ||
| | | 15/11 | ||
|- | |- | ||
| 59 | | 59 | ||
| 544.615 | | 544.615 | ||
| | | 48/35 | ||
|- | |- | ||
| 60 | | 60 | ||
| 553.846 | | 553.846 | ||
| | | 11/8 | ||
|- | |- | ||
| 61 | | 61 | ||
| 563.077 | | 563.077 | ||
| | | 18/13 | ||
|- | |- | ||
| 62 | | 62 | ||
| 572.308 | | 572.308 | ||
| | | 25/18 | ||
|- | |- | ||
| 63 | | 63 | ||
| 581.538 | | 581.538 | ||
| | | 7/5 | ||
|- | |- | ||
| 64 | | 64 | ||
| 590.769 | | 590.769 | ||
| | | 45/32 | ||
|- | |- | ||
| 65 | | 65 | ||
| 600.000 | | 600.000 | ||
| | | 99/70, 140/99 | ||
|- | |- | ||
|… | |… | ||
Line 293: | Line 293: | ||
17-limit commas: 221/220, 364/363, 442/441, 595/594, 1275/1274, 4913/4875 | 17-limit commas: 221/220, 364/363, 442/441, 595/594, 1275/1274, 4913/4875 | ||
=== Rank-2 temperaments === | |||
{| class="wikitable center-all left-5" | |||
|+Table of rank-2 temperaments by generator | |||
! Periods<br>per octave | |||
! Generator<br>(reduced) | |||
! Cents<br>(reduced) | |||
! Associated<br>ratio | |||
! Temperaments | |||
|- | |||
| 1 | |||
| 19\130 | |||
| 175.38 | |||
| 72/65 | |||
| [[Sesquiquartififths]] / [[sesquart]] | |||
|- | |||
| 1 | |||
| 21\130 | |||
| 193.85 | |||
| 28/25 | |||
| [[Didacus]] / [[hemiwürschmidt]] | |||
|- | |||
| 1 | |||
| 27\130 | |||
| 249.23 | |||
| 15/13 | |||
| [[Hemischis]] | |||
|- | |||
| 2 | |||
| 9\130 | |||
| 83.08 | |||
| [[21/20]] | |||
| [[Harry]] | |||
|} | |||
== Scales == | == Scales == |
Revision as of 10:42, 30 June 2021
130edo divides the octave into 130 parts of size 9.231 cents each.
Theory
130edo is a zeta peak edo, a zeta peak integer edo, and a zeta integral edo but not a gap edo. It can be used to tune a variety of temperaments, including hemiwürschmidt, sesquiquartififths, harry and hemischis. It also can be used to tune the rank-three temperament jove, tempering out 243/242 and 441/440, plus 364/363 for the 13-limit and 595/594 for the 17-limit. It gives the optimal patent val for 11-limit hemiwürschmidt and sesquart and 13-limit harry temperaments.
Prime harmonics
Script error: No such module "primes_in_edo".
Intervals
Degree | Cents | Approximate Ratios |
---|---|---|
0 | 0.000 | 1/1 |
1 | 9.231 | 126/125, 225/224 |
2 | 18.462 | 81/80 |
3 | 27.692 | 64/63 |
4 | 36.923 | 49/48, 50/49 |
5 | 46.154 | 36/35 |
6 | 55.385 | 33/32 |
7 | 64.615 | 28/27, 27/26 |
8 | 73.846 | 25/24 |
9 | 83.077 | 21/20, 22/21 |
10 | 92.308 | 135/128 |
11 | 101.538 | 35/33 |
12 | 110.769 | 16/15 |
13 | 120.000 | 15/14 |
14 | 129.231 | 14/13 |
15 | 138.462 | 13/12 |
16 | 147.692 | 12/11 |
17 | 156.923 | 35/32 |
18 | 166.154 | 11/10 |
19 | 175.385 | 72/65 |
20 | 184.615 | 10/9 |
21 | 193.846 | 28/25 |
22 | 203.077 | 9/8 |
23 | 212.308 | 44/39 |
24 | 221.538 | 25/22 |
25 | 230.769 | 8/7 |
26 | 240.000 | 55/48 |
27 | 249.231 | 15/13 |
28 | 258.462 | 64/55 |
29 | 267.692 | 7/6 |
30 | 276.923 | 75/64 |
31 | 286.154 | 13/11 |
32 | 295.385 | 32/27 |
33 | 304.615 | 25/21 |
34 | 313.846 | 6/5 |
35 | 323.077 | 65/54 |
36 | 332.308 | 40/33 |
37 | 341.538 | 39/32 |
38 | 350.769 | 11/9, 27/22 |
39 | 360.000 | 16/13 |
40 | 369.231 | 26/21 |
41 | 378.462 | 56/45 |
42 | 387.692 | 5/4 |
43 | 396.923 | 63/50 |
44 | 406.154 | 81/64 |
45 | 415.385 | 14/11 |
46 | 424.615 | 32/25 |
47 | 433.846 | 9/7 |
48 | 443.077 | 128/99 |
49 | 452.308 | 13/10 |
50 | 461.538 | 72/55 |
51 | 470.769 | 21/16 |
52 | 480.000 | 33/25 |
53 | 489.231 | 250/189 |
54 | 498.462 | 4/3 |
55 | 507.692 | 75/56 |
56 | 516.923 | 27/20 |
57 | 526.154 | 65/48 |
58 | 535.385 | 15/11 |
59 | 544.615 | 48/35 |
60 | 553.846 | 11/8 |
61 | 563.077 | 18/13 |
62 | 572.308 | 25/18 |
63 | 581.538 | 7/5 |
64 | 590.769 | 45/32 |
65 | 600.000 | 99/70, 140/99 |
… | … | … |
Regular temperament properties
Commas
7-limit commas: 2401/2400, 3136/3125, 19683/19600
11-limit commas: 441/440, 540/539, 3136/3125, 4000/3993
13-limit commas: 3136/3125, 243/242, 441/440, 351/350, 364/363
17-limit commas: 221/220, 364/363, 442/441, 595/594, 1275/1274, 4913/4875
Rank-2 temperaments
Periods per octave |
Generator (reduced) |
Cents (reduced) |
Associated ratio |
Temperaments |
---|---|---|---|---|
1 | 19\130 | 175.38 | 72/65 | Sesquiquartififths / sesquart |
1 | 21\130 | 193.85 | 28/25 | Didacus / hemiwürschmidt |
1 | 27\130 | 249.23 | 15/13 | Hemischis |
2 | 9\130 | 83.08 | 21/20 | Harry |
Scales
Step | Cents | Distance to the nearest JI interval (selected ratios) |
---|---|---|
13 (13/130) | 120.000 | 15/14 (+0.557 ¢) |
7 (20/130) | 184.615 | 10/9 (+2.211 ¢) |
9 (29/130) | 267.692 | 7/6 (+0,821 ¢) |
9 (38/130) | 350.769 | 11/9 (+3.361 ¢) |
9 (47/130) | 433.846 | 9/7 (-1.238 ¢) |
7 (54/130) | 498.462 | 4/3 (+0.417 ¢) |
13 (67/130) | 618.462 | 10/7 (+0.974 ¢) |
9 (76/130) | 701.538 | 3/2 (-0.417 ¢) |
7 (83/130) | 766.154 | 14/9 (+1.238 ¢) |
13 (96/130) | 886.154 | 5/3 (+1.795 ¢) |
5 (101/130) | 932.308 | 12/7 (-0.821 ¢) |
13 (114/130) | 1052.308 | 11/6 (+2.945 ¢) |
7 (121/130) | 1116.923 | 21/11 (-2.540 ¢) |
9 (130/130) | 1200.000 | Octave (2/1, ±0 ¢) |
Music
- The Paradise of Cantor play by Gene Ward Smith
- "Narrative Wars" by Sevish (uses a 14-tone (13 7 9 9 9 7 13 9 7 13 5 13 7 9) subset of 130-EDO, from the 2016 compilation album "Next Xen")