Sensamagic clan: Difference between revisions
recat |
|||
Line 199: | Line 199: | ||
= Bohpier = | = Bohpier = | ||
Bohpier is named after its [[Relationship between Bohlen-Pierce and octave-ful temperaments|interesting relationship with the non-octave Bohlen-Pierce equal temperament]]. | |||
== 5-limit == | == 5-limit == | ||
Revision as of 21:13, 2 May 2021
The sensamagic clan tempers out the sensamagic comma, 245/243, a triprime comma with no factors of 2, ⟨0 -5 1 2] to be exact.
Lambda
Subgroup: 3.5.7
Comma list: 245/243
Sval mapping: [⟨1 1 2], ⟨0 -2 1]]
Sval mapping generators: ~3, ~9/7
Gencom mapping: [⟨0 1 1 2], ⟨0 0 -2 1]]
POTE generator: ~9/7 = 440.4881
Vals: b4, b9, b13, b56, b69, b82, b95
Extensions
For full 7-limit extensions, we have sensi, bohpier, sensa/escaped, salsa, pycnic, cohemiripple, superthird, magus and leapweek discussed below, as well as father, sidi, godzilla, hedgehog, superpyth, hemiaug, magic, rodan, octacot, shrutar, and clyde discussed elsewhere.
Tempering out 245/243 alone in the full 7-limit leads to a rank-3 temperament, sensamagic, for which 283edo is the optimal patent val.
Sensi
Sensi tempers out 126/125, 686/675 and 4375/4374 in addition to 245/243, and can be described as the 19&27 temperament. It has as a generator half the size of a slightly wide major sixth, which gives an interval sharp of 9/7 and flat of 13/10, both of which can be used to identify it, as 2.3.5.7.13 sensi (sensation) tempers out 91/90. 22/17, in the middle, is even closer to the generator. 46edo is an excellent sensi tuning, and MOS of size 11, 19 and 27 are available. The name "sensi" is a play on the words "semi-" and "sixth."
7-limit
Subgroup: 2.3.5.7
Comma list: 126/125, 245/243
Mapping: [⟨1 6 8 11], ⟨0 -7 -9 -13]]
Mapping generators: ~2, ~14/9
Wedgie: ⟨⟨ 7 9 13 -2 1 5 ]]
POTE generator: ~9/7 = 443.383
- [[1 0 0 0⟩, [1/13 0 0 7/13⟩, [5/13 0 0 9/13⟩, [0 0 0 1⟩]
- Eigenmonzos: 2, 7
- [[1 0 0 0⟩, [2/5 14/5 -7/5 0⟩, [4/5 18/5 -9/5 0⟩, [3/5 26/5 -13/5 0⟩]
- Eigenmonzos: 2, 9/5
Algebraic generator: The real root of x5 + x4 - 4x2 + x - 1, at 443.3783 cents.
Badness: 0.0256
Sensation
Subgroup: 2.3.5.7.13
Comma list: 91/90, 126/125, 169/168
Sval mapping: [⟨1 6 8 11 10], ⟨0 -7 -9 -13 -10]]
Gencom mapping: [⟨1 6 8 11 0 10], ⟨0 -7 -9 -13 0 -10]]
Gencom: [2 9/7; 91/90 126/125 169/168]
POTE generator: ~9/7 = 443.322
Sensor
Subgroup: 2.3.5.7.11
Comma list: 126/125, 245/243, 385/384
Mapping: [⟨1 6 8 11 -6], ⟨0 -7 -9 -13 15]]
POTE generator: ~9/7 = 443.294
Badness: 0.0379
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 91/90, 126/125, 169/168, 385/384
Mapping: [⟨1 6 8 11 -6 10], ⟨0 -7 -9 -13 15 -10]]
POTE generator: ~9/7 = 443.321
Badness: 0.0256
Sensis
Subgroup: 2.3.5.7.11
Comma list: 56/55, 100/99, 245/243
Mapping: [⟨1 6 8 11 6], ⟨0 -7 -9 -13 -4]]
POTE generator: ~9/7 = 443.962
Badness: 0.0287
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 56/55, 78/77, 91/90, 100/99
Mapping: [⟨1 6 8 11 6 10], ⟨0 -7 -9 -13 -4 -10]]
POTE generator: ~9/7 = 443.945
Badness: 0.0200
Sensus
Subgroup: 2.3.5.7.11
Comma list: 126/125, 176/175, 245/243
Mapping: [⟨1 6 8 11 23], ⟨0 -7 -9 -13 -31]]
POTE generator: ~9/7 = 443.626
Badness: 0.0295
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 91/90, 126/125, 169/168, 352/351
Mapping: [⟨1 6 8 11 23 10], ⟨0 -7 -9 -13 -31 -10]]
POTE generator: ~9/7 = 443.559
Badness: 0.0208
Sensa
Subgroup: 2.3.5.7.11
Comma list: 55/54, 77/75, 99/98
Mapping: [⟨1 6 8 11 11], ⟨0 -7 -9 -13 -12]]
POTE generator: ~9/7 = 443.518
Badness: 0.0368
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 55/54, 66/65, 77/75, 143/140
Mapping: [⟨1 6 8 11 11 10], ⟨0 -7 -9 -13 -12 -11]]
POTE generator: ~9/7 = 443.506
Badness: 0.0233
Hemisensi
Subgroup: 2.3.5.7.11
Comma list: 126/125, 243/242, 245/242
Mapping: [⟨1 13 17 24 32], ⟨0 -14 -18 -26 -35]]
POTE generator: ~25/22 = 221.605
Badness: 0.0487
Bohpier
Bohpier is named after its interesting relationship with the non-octave Bohlen-Pierce equal temperament.
5-limit
Subgroup: 2.3.5
Comma list: 1220703125/1162261467
Mapping: [⟨1 0 0], ⟨0 13 19]]
POTE generator: ~27/25 = 146.476
Badness: 0.8605
7-limit
Subgroup: 2.3.5.7
Comma list: 245/243, 3125/3087
Mapping: [⟨1 0 0 0], ⟨0 13 19 23]]
Wedgie: ⟨⟨ 13 19 23 0 0 0 ]]
POTE generator: ~27/25 = 146.474
Badness: 0.0682
11-limit
Subgroup: 2.3.5.7.11
Comma list: 100/99, 245/243, 1344/1331
POTE generator: ~12/11 = 146.545
Mapping: [⟨1 0 0 0 2], ⟨0 13 19 23 12]]
Badness: 0.0339
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 100/99, 144/143, 196/195, 275/273
POTE generator: ~12/11 = 146.603
Mapping: [⟨1 0 0 0 2 2], ⟨0 13 19 23 12 14]]
Badness: 0.0249
Music
by Chris Vaisvil:
Sensa aka escaped
Subgroup: 2.3.5.7
Comma list: 245/243, 65625/65536
Mapping: [⟨1 2 2 4], ⟨0 -9 7 -26]]
Wedgie: ⟨⟨ 9 -7 26 -32 16 80 ]]
POTE generator: ~28/27 = 55.122
Badness: 0.0887
11-limit
Subgroup: 2.3.5.7.11
Comma list: 245/243, 385/384, 4000/3993
Mapping: [⟨1 2 2 4 3], ⟨0 -9 7 -26 10]]
POTE generator: ~28/27 = 55.126
Badness: 0.0358
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 245/243, 352/351, 385/384, 625/624
Mapping: [⟨1 2 2 4 3 2], ⟨0 -9 7 -26 10 37]]
POTE generator: ~28/27 = 55.138
Badness: 0.0317
Salsa
Subgroup: 2.3.5.7
Comma list: 245/243, 32805/32768
Mapping: [⟨1 1 7 -1], ⟨0 2 -16 13]]
Wedgie: ⟨⟨ 2 -16 13 -30 15 75 ]]
POTE generator: ~128/105 = 351.049
Badness: 0.08015
11-limit
Subgroup: 2.3.5.7.11
Comma list: 243/242, 245/242, 385/384
Mapping: [⟨1 1 7 -1 2], ⟨0 2 -16 13 5]]
POTE generator: ~11/9 = 351.014
Badness: 0.0394
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 105/104, 144/143, 243/242, 245/242
Mapping: [⟨1 1 7 -1 2 4], ⟨0 2 -16 13 5 -1]]
POTE generator: ~11/9 = 351.025
Badness: 0.0310
Pycnic
The fifth of pycnic in size is a meantone fifth, but four of them are not used to reach 5. This has the effect of making the Pythagorean major third, nominally 81/64, very close to 5/4 in tuning, being a cent sharp of it in the POTE tuning for instance. Pycnic has MOS of size 9, 11, 13, 15, 17... which contain these alternative thirds, leading to two kinds of major triads, an official one and a nominally Pythagorean one which is actually in better tune.
Subgroup: 2.3.5.7
Comma list: 245/243, 525/512
Mapping: [⟨1 3 -1 8], ⟨0 -3 7 -11]]
Wedgie: ⟨⟨ 3 -7 11 -18 9 45 ]]
POTE generator: ~45/32 = 567.720
Badness: 0.0737
Cohemiripple
Subgroup: 2.3.5.7
Comma list: 245/243, 1323/1250
Mapping: [⟨1 7 11 12], ⟨0 -10 -16 -17]]
Wedgie: ⟨⟨ 10 16 17 2 -1 -5 ]]
POTE generator: ~7/5 = 549.944
Badness: 0.1902
11-limit
Subgroup: 2.3.5.7.11
Comma list: 77/75, 243/242, 245/242
Mapping: [⟨1 7 11 12 17], ⟨0 -10 -16 -17 -25]]
POTE generator: ~7/5 = 549.945
Badness: 0.0827
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 66/65, 77/75, 147/143, 243/242
Mapping: [⟨1 7 11 12 17 14], ⟨0 -10 -16 -17 -25 -19]]
POTE generator: ~7/5 = 549.958
Badness: 0.0499
Superthird
Subgroup: 2.3.5.7
Comma list: 245/243, 78125/76832
Mapping: [⟨1 13 15 25], ⟨0 -18 -20 -35]]
Wedgie: ⟨⟨ 18 20 35 -10 5 25 ]]
POTE generator: ~9/7 = 439.076
Badness: 0.1394
11-limit
Subgroup: 2.3.5.7.11
Comma list: 100/99, 245/243, 78125/76832
Mapping: [⟨1 13 15 25 6], ⟨0 -18 -20 -35 -4]]
POTE generator: ~9/7 = 439.152
Badness: 0.0709
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 100/99, 144/143, 196/195, 1375/1352
Mapping: [⟨1 13 15 25 6 24], ⟨0 -18 -20 -35 -4 -32]]
POTE generator: ~9/7 = 439.119
Badness: 0.0528
Magus
5-limit
Subgroup: 2.3.5
Comma list: 50331648/48828125
Mapping: [⟨1 9 3], ⟨0 -11 -1]]
POTE generator: ~5/4 = 391.225
Badness: 0.3602
7-limit
Subgroup: 2.3.5.7
Comma list: 245/243, 28672/28125
Mapping: [⟨1 9 3 21], ⟨0 -11 -1 -27]]
Wedgie: ⟨⟨ 11 1 27 -24 12 60 ]]
POTE generator: ~5/4 = 391.465
Badness: 0.1084
11-limit
Subgroup: 2.3.5.7.11
Comma list: 176/175, 245/243, 1331/1323
Mapping: [⟨1 9 3 21 23], ⟨0 -11 -1 -27 -29]]
POTE generator: ~5/4 = 391.503
Badness: 0.0451
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 91/90, 176/175, 245/243, 1331/1323
Mapping: [⟨1 9 3 21 23 1], ⟨0 -11 -1 -27 -29 4]]
POTE generator: ~5/4 = 391.366
Badness: 0.0430
Leapweek
Subgroup: 2.3.5.7
Comma list: 245/243, 2097152/2066715
Mapping: [⟨1 1 17 -6], ⟨0 1 -25 15]]
POTE generator: ~3/2 = 704.536
Badness: 0.14058
11-limit
Subgroup: 2.3.5.7.11
Comma list: 245/243, 385/384, 1331/1323
Mapping: [⟨1 1 17 -6 -3], ⟨0 1 -25 15 11]]
POTE generator: ~3/2 = 704.554
Badness: 0.0507
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 169/168, 245/243, 352/351, 364/363
Mapping: [⟨1 1 17 -6 -3 -1], ⟨0 1 -25 15 11 8]]
POTE generator: ~3/2 = 704.571
Badness: 0.0327