7L 2s: Difference between revisions
m TAMNAMS consistency correction |
m get rid of weird accent on "mavila" |
||
Line 12: | Line 12: | ||
This page is about of a [[MOSScales|MOSScale]] with 7 large steps and 2 small steps arranged LLLsLLLLs (or any rotation of that, such as LLsLLLsLL). | This page is about of a [[MOSScales|MOSScale]] with 7 large steps and 2 small steps arranged LLLsLLLLs (or any rotation of that, such as LLsLLLsLL). | ||
If you're looking for highly accurate scales (that is, ones that approximate JI closely), there are much better scale patterns to look at. However, if your harmonic entropy is coarse enough (that is, if 678 cents is an acceptable '3/2' to you), then [[ | If you're looking for highly accurate scales (that is, ones that approximate JI closely), there are much better scale patterns to look at. However, if your harmonic entropy is coarse enough (that is, if 678 cents is an acceptable '3/2' to you), then [[Pelogic family#Mavila|mavila]] is an important harmonic entropy minimum here. So a general name for this MOS pattern could be "Mavila Superdiatonic" or simply 'Superdiatonic'. | ||
These scales are strongly associated with the [[ | These scales are strongly associated with the [[Armodue]] project/system applied too on Septimal-mavila and Hornbostel temperaments. | ||
Optional types of 'JI [[Blown_Fifth|Blown Fifth]]' Generators: 31/21, 34/23, 65/44, 71/48, 99/67, 105/71, 108/73, 133/90, 145/98, 176/119 & 250/169. | Optional types of 'JI [[Blown_Fifth|Blown Fifth]]' Generators: 31/21, 34/23, 65/44, 71/48, 99/67, 105/71, 108/73, 133/90, 145/98, 176/119 & 250/169. | ||
Line 44: | Line 44: | ||
| | 682.758 | | | 682.758 | ||
| | 8 8 8 1 | | | 8 8 8 1 | ||
| | 2 generators equal 11/10, 6 equal 4/3, creating a hybrid | | | 2 generators equal 11/10, 6 equal 4/3, creating a hybrid Mavila/Porcupine scale with three perfect 5ths as well as the flat ones. | ||
|- | |- | ||
| | 21\37 | | | 21\37 | ||
Line 291: | Line 291: | ||
| | 674.286 | | | 674.286 | ||
| | 13 13 13 7 | | | 13 13 13 7 | ||
| | Armodue- | | | Armodue-Mavila 1/13-tone | ||
|- | |- | ||
| | | | | | ||
Line 298: | Line 298: | ||
| | 674.157 | | | 674.157 | ||
| | 11 11 11 6 | | | 11 11 11 6 | ||
| | Armodue- | | | Armodue-Mavila 1/11-tone | ||
|- | |- | ||
| | | | | | ||
Line 305: | Line 305: | ||
| | 673.973 | | | 673.973 | ||
| | 9 9 9 5 | | | 9 9 9 5 | ||
| | Armodue- | | | Armodue-Mavila 1/9-tone <span style="font-size: 12.8000001907349px;">(with an approximation of the Perfect Fifth + 1/5 Pyth.Comma [706.65 Cents]: 43\73 is 706.85 Cents)</span> | ||
|- | |- | ||
| | | | | | ||
Line 312: | Line 312: | ||
| | 673.684 | | | 673.684 | ||
| | 7 7 7 4 | | | 7 7 7 4 | ||
| | Armodue- | | | Armodue-Mavila 1/7-tone <span style="font-size: 12.8000001907349px;">(the 'Commatic' version of Armodue, because its high accuracy of the [[7/4|7/4]] interval, the note '8')</span> | ||
|- | |- | ||
| | | | | | ||
Line 333: | Line 333: | ||
| | 673.381 | | | 673.381 | ||
| | 17 17 17 10 | | | 17 17 17 10 | ||
| | Armodue- | | | Armodue-Mavila 1/17-tone | ||
|- | |- | ||
| | | | | | ||
Line 347: | Line 347: | ||
| | 673.171 | | | 673.171 | ||
| | 5 5 5 3 | | | 5 5 5 3 | ||
| | 5;3 Golden Armodue- | | | 5;3 Golden Armodue-Mavila 1/5-tone | ||
|- | |- | ||
| | | | | | ||
Line 354: | Line 354: | ||
| | 672.897 | | | 672.897 | ||
| | 13 13 13 8 | | | 13 13 13 8 | ||
| | 13;8 Golden | | | 13;8 Golden Mavila 1/13-tone | ||
|- | |- | ||
| | | | | | ||
Line 361: | Line 361: | ||
| | 672.85 | | | 672.85 | ||
| | <span style="background-color: #ffffff; color: #222222; font-family: arial,sans-serif; font-size: small;">φ φ φ 1</span> | | | <span style="background-color: #ffffff; color: #222222; font-family: arial,sans-serif; font-size: small;">φ φ φ 1</span> | ||
| | GOLDEN | | | GOLDEN MAVILA (L/s = <span style="background-color: #ffffff; color: #222222; font-family: arial,sans-serif; font-size: small;">φ)</span> | ||
|- | |- | ||
| | | | | | ||
Line 368: | Line 368: | ||
| | 672.832 | | | 672.832 | ||
| | 21 21 21 13 | | | 21 21 21 13 | ||
| | 21;13 Golden | | | 21;13 Golden Mavila 1/21-tone <span style="font-size: 12.8000001907349px;">(Phi is the step 120\173)</span> | ||
|- | |- | ||
| | | | | | ||
Line 375: | Line 375: | ||
| | 672.727 | | | 672.727 | ||
| | 8 8 8 5 | | | 8 8 8 5 | ||
| | 8;5 Golden | | | 8;5 Golden Mavila 1/8-tone | ||
|- | |- | ||
| | | | | | ||
Line 445: | Line 445: | ||
| | 672 | | | 672 | ||
| | 3 3 3 2 | | | 3 3 3 2 | ||
| | 3;2 Golden Armodue- | | | 3;2 Golden Armodue-Mavila 1/3-tone | ||
|- | |- | ||
| | | | | |
Revision as of 22:59, 19 April 2021
↖ 6L 1s | ↑ 7L 1s | 8L 1s ↗ |
← 6L 2s | 7L 2s | 8L 2s → |
↙ 6L 3s | ↓ 7L 3s | 8L 3s ↘ |
┌╥╥╥╥┬╥╥╥┬┐ │║║║║│║║║││ │││││││││││ └┴┴┴┴┴┴┴┴┴┘
sLLLsLLLL
This page is about of a MOSScale with 7 large steps and 2 small steps arranged LLLsLLLLs (or any rotation of that, such as LLsLLLsLL).
If you're looking for highly accurate scales (that is, ones that approximate JI closely), there are much better scale patterns to look at. However, if your harmonic entropy is coarse enough (that is, if 678 cents is an acceptable '3/2' to you), then mavila is an important harmonic entropy minimum here. So a general name for this MOS pattern could be "Mavila Superdiatonic" or simply 'Superdiatonic'.
These scales are strongly associated with the Armodue project/system applied too on Septimal-mavila and Hornbostel temperaments.
Optional types of 'JI Blown Fifth' Generators: 31/21, 34/23, 65/44, 71/48, 99/67, 105/71, 108/73, 133/90, 145/98, 176/119 & 250/169.
Generator | Generator size (cents) | Pentachord steps | Comments | ||
---|---|---|---|---|---|
4\7 | 685.714 | 1 1 1 0 | |||
102\179 | 683.798 | 25 25 25 2 | Approximately 0.03 cents away from 95/64 | ||
33\58 | 682.758 | 8 8 8 1 | 2 generators equal 11/10, 6 equal 4/3, creating a hybrid Mavila/Porcupine scale with three perfect 5ths as well as the flat ones. | ||
21\37 | 681.081 | 5 5 5 1 | |||
17\30 | 680 | 4 4 4 1 | L/s = 4 | ||
30\53 | 679.245 | 7 7 7 2 | |||
43\76 | 678.947 | 10 10 10 3 | |||
56\99 | 678.788 | 13 13 13 4 | |||
69\122 | 678.6885 | 16 16 16 5 | |||
82\145 | 678.621 | 19 19 19 6 | |||
95\168 | 678.571 | 22 22 22 7 | |||
678.569 | π π π 1 | L/s = π | |||
108\191 | 678.534 | 25 25 25 8 | |||
121\214 | 678.505 | 28 28 28 9 | 28;9 Superdiatonic 1/28-tone (a slight exceeded representation of the ratio 262144/177147, the Pythagorean wolf Fifth) | ||
134\237 | 678.481 | 31 31 31 10 | HORNBOSTEL TEMPERAMENT (1/31-tone; Optimum high size of Hornbostel '6th') | ||
13\23 | 678.261 | 3 3 3 1 | HORNBOSTEL TEMPERAMENT (Armodue 1/3-tone) | ||
126\223 | 678.027 | 29 29 29 10 | HORNBOSTEL TEMPERAMENT
(Armodue 1/29-tone) | ||
113\200 | 678 | 26 26 26 9 | HORNBOSTEL (& OGOLEVETS) TEMPERAMENT (Armodue 1/26-tone; Best equillibrium between 6/5, Phi (833.1 Cent) and Square root of Pi (990.9 Cent), the notes '3', '7' & '8') | ||
100\177 | 677.966 | 23 23 23 8 | |||
87\154 | 677.922 | 20 20 20 7 | |||
74\131 | 677.863 | 17 17 17 6 | Armodue-Hornbostel 1/17-tone (the Golden Tone System of Thorvald Kornerup and a temperament of the Alexei Ogolevets's list of temperaments) | ||
61\108 | 677.778 | 14 14 14 5 | Armodue-Hornbostel 1/14-tone | ||
109\193 | 677.720 | 25 25 25 9 | Armodue-Hornbostel 1/25-tone | ||
48\85 | 677.647 | 11 11 11 4 | Armodue-Hornbostel 1/11-tone (Optimum accuracy of Phi interval, the note '7') | ||
677.562 | e e e 1 | L/s = e | |||
35\62 | 677.419 | 8 8 8 3 | Armodue-Hornbostel 1/8-tone | ||
92\163 | 677.301 | 21 21 21 8 | 21;8 Superdiatonic 1/21-tone | ||
677.28 | φ+1 φ+1 φ+1 1 | Split φ superdiatonic relation (34;13 - 55;21 - 89;34 - 144;55 - 233;89 - 377;144 - 610;233..) | |||
57\101 | 677.228 | 13 13 13 5 | 13;5 Superdiatonic 1/13-tone | ||
22\39 | 676.923 | 5 5 5 2 | Armodue-Hornbostel 1/5-tone (Optimum low size of Hornbostel '6th') | ||
75\133 | 676.692 | 17 17 17 7 | 17;7 Superdiatonic 1/17-tone (Note the very accuracy of the step 75 with the ratio 34/23 with an error of +0.011 Cents) | ||
53\94 | 676.596 | 12 12 12 5 | |||
31\55 | 676.364 | 7 7 7 3 | 7;3 Superdiatonic 1/7-tone | ||
40\71 | 676.056 | 9 9 9 4 | 9;4 Superdiatonic 1/9-tone | ||
49\87 | 675.862 | 11 11 11 5 | 11;5 Superdiatonic 1/11-tone | ||
58\103 | 675.728 | 13 13 13 6 | 13;6 Superdiatonic 1/13-tone | ||
9\16 | 675 | 2 2 2 1 | [BOUNDARY OF PROPRIETY: smaller generators are strictly proper]ARMODUE ESADECAFONIA (or Goldsmith Temperament) | ||
59\105 | 674.286 | 13 13 13 7 | Armodue-Mavila 1/13-tone | ||
50\89 | 674.157 | 11 11 11 6 | Armodue-Mavila 1/11-tone | ||
41\73 | 673.973 | 9 9 9 5 | Armodue-Mavila 1/9-tone (with an approximation of the Perfect Fifth + 1/5 Pyth.Comma [706.65 Cents]: 43\73 is 706.85 Cents) | ||
32\57 | 673.684 | 7 7 7 4 | Armodue-Mavila 1/7-tone (the 'Commatic' version of Armodue, because its high accuracy of the 7/4 interval, the note '8') | ||
673.577 | √3 √3 √3 1 | ||||
55\98 | 673.469 | 12 12 12 7 | |||
78\139 | 673.381 | 17 17 17 10 | Armodue-Mavila 1/17-tone | ||
101\180 | 673.333 | 22 22 22 13 | |||
23\41 | 673.171 | 5 5 5 3 | 5;3 Golden Armodue-Mavila 1/5-tone | ||
60\107 | 672.897 | 13 13 13 8 | 13;8 Golden Mavila 1/13-tone | ||
672.85 | φ φ φ 1 | GOLDEN MAVILA (L/s = φ) | |||
97\173 | 672.832 | 21 21 21 13 | 21;13 Golden Mavila 1/21-tone (Phi is the step 120\173) | ||
37\66 | 672.727 | 8 8 8 5 | 8;5 Golden Mavila 1/8-tone | ||
51\91 | 672.527 | 11 11 11 7 | 11;7 Superdiatonic 1/11-tone | ||
672.523 | π π π 2 | ||||
116\207 | 672.464 | 25 25 25 16 | 25;16 Superdiatonic 1/25-tone | ||
65\116 | 672.414 | 14 14 14 9 | 14;9 Superdiatonic 1/14-tone | ||
79\141 | 672.340 | 17 17 17 11 | 17;11 Superdiatonic 1/17-tone | ||
93\166 | 672.289 | 20 20 20 13 | |||
107\191 | 672.251 | 23 23 23 15 | |||
121\216 | 672.222 | 26 26 26 17 | 26;17 Superdiatonic 1/26-tone | ||
135\241 | 672.199 | 29 29 29 19 | 29;19 Superdiatonic 1/29-tone | ||
14\25 | 672 | 3 3 3 2 | 3;2 Golden Armodue-Mavila 1/3-tone | ||
145\259 | 671.815 | 31 31 31 21 | 31;21 Superdiatonic 1/31-tone | ||
131\234 | 671.795 | 28 28 28 19 | 28;19 Superdiatonic 1/28-tone | ||
117\209 | 671.770 | 25 25 25 17 | |||
103\184 | 671.739 | 22 22 22 15 | |||
89\159 | 671.698 | 19 19 19 13 | |||
75\134 | 671.642 | 16 16 16 11 | |||
61\109 | 671.560 | 13 13 13 9 | |||
47\84 | 671.429 | 10 10 10 7 | |||
33\59 | 671.186 | 7 7 7 5 | |||
19\34 | 670.588 | 4 4 4 3 | |||
24\43 | 669.767 | 5 5 5 4 | |||
5\9 | 666.667 | 1 1 1 1 |