72edo: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Line 291: Line 291:
| | degrees
| | degrees
| | cents value
| | cents value
|pions
|7mus
| | approximate ratios (11-limit)
| | approximate ratios (11-limit)
| colspan="3" style="text-align:center;" | [[Ups_and_Downs_Notation|ups and downs]] [[Ups_and_Downs_Notation|notation]]
| colspan="3" style="text-align:center;" | [[Ups_and_Downs_Notation|ups and downs]] [[Ups_and_Downs_Notation|notation]]
|-
|-
| | 0
| colspan="4"| 0
| | 0
| | 1/1
| | 1/1
| style="text-align:center;" | P1
| style="text-align:center;" | P1
Line 303: Line 304:
| | 1
| | 1
| | 16.667
| | 16.667
|17.667
|21.333 (15.555<sub>16</sub>)
| | 81/80
| | 81/80
| style="text-align:center;" | ^1
| style="text-align:center;" | ^1
Line 310: Line 313:
| | 2
| | 2
| | 33.333
| | 33.333
|35.333
|42.667 (2A.AAB<sub>16</sub>)
| | 45/44
| | 45/44
| style="text-align:center;" | ^^
| style="text-align:center;" | ^^
Line 317: Line 322:
| | 3
| | 3
| | 50
| | 50
|53
|64 (40<sub>16</sub>)
| | 33/32
| | 33/32
| style="text-align:center;" | ^<span style="font-size: 90%; vertical-align: super;">3</span>1, v<span style="font-size: 90%; vertical-align: super;">3</span>m2
| style="text-align:center;" | ^<span style="font-size: 90%; vertical-align: super;">3</span>1, v<span style="font-size: 90%; vertical-align: super;">3</span>m2
Line 326: Line 333:
| | 4
| | 4
| | 66.667
| | 66.667
|70.667
|85.333 (55.555<sub>16</sub>)
| | 25/24
| | 25/24
| style="text-align:center;" | vvm2
| style="text-align:center;" | vvm2
Line 333: Line 342:
| | 5
| | 5
| | 83.333
| | 83.333
|88.333
|106.667 (6A.AAB<sub>16</sub>)
| | 21/20
| | 21/20
| style="text-align:center;" | vm2
| style="text-align:center;" | vm2
Line 340: Line 351:
| | 6
| | 6
| | 100
| | 100
|106
|128 (80<sub>16</sub>)
| | 35/33
| | 35/33
| style="text-align:center;" | m2
| style="text-align:center;" | m2
Line 347: Line 360:
| | 7
| | 7
| | 116.667
| | 116.667
|123.667
|149.333 (95.555<sub>16</sub>)
| | 15/14
| | 15/14
| style="text-align:center;" | ^m2
| style="text-align:center;" | ^m2
Line 354: Line 369:
| | 8
| | 8
| | 133.333
| | 133.333
|141.333
|170.667 (AA.AAB<sub>16</sub>)
| | 27/25
| | 27/25
| style="text-align:center;" | v~2
| style="text-align:center;" | v~2
Line 361: Line 378:
| | 9
| | 9
| | 150
| | 150
|159
|192 (C0<sub>16</sub>)
| | 12/11
| | 12/11
| style="text-align:center;" | ~2
| style="text-align:center;" | ~2
Line 368: Line 387:
| | 10
| | 10
| | 166.667
| | 166.667
|176.667
|213.333 (D5.555<sub>16</sub>)
| | 11/10
| | 11/10
| style="text-align:center;" | ^~2
| style="text-align:center;" | ^~2
Line 375: Line 396:
| | 11
| | 11
| | 183.333
| | 183.333
|194.333
|234.667 (EA.AAB<sub>16</sub>)
| | 10/9
| | 10/9
| style="text-align:center;" | vM2
| style="text-align:center;" | vM2
Line 382: Line 405:
| | 12
| | 12
| | 200
| | 200
|212
|256 (100<sub>16</sub>)
| | 9/8
| | 9/8
| style="text-align:center;" | M2
| style="text-align:center;" | M2
Line 389: Line 414:
| | 13
| | 13
| | 216.667
| | 216.667
|229.667
|277.333 (115.555<sub>16</sub>)
| | 25/22
| | 25/22
| style="text-align:center;" | ^M2
| style="text-align:center;" | ^M2
Line 396: Line 423:
| | 14
| | 14
| | 233.333
| | 233.333
|247.333
|298.667 (12A.AAB<sub>16</sub>)
| | 8/7
| | 8/7
| style="text-align:center;" | ^^M2
| style="text-align:center;" | ^^M2
Line 403: Line 432:
| | 15
| | 15
| | 250
| | 250
|265
|320 (140<sub>16</sub>)
| | 81/70
| | 81/70
| style="text-align:center;" | ^<span style="font-size: 90%; vertical-align: super;">3</span>M2, v<span style="font-size: 90%; vertical-align: super;">3</span>m3
| style="text-align:center;" | ^<span style="font-size: 90%; vertical-align: super;">3</span>M2, v<span style="font-size: 90%; vertical-align: super;">3</span>m3
Line 412: Line 443:
| | 16
| | 16
| | 266.667
| | 266.667
|282.333
|341.333 (155.555<sub>16</sub>)
| | 7/6
| | 7/6
| style="text-align:center;" | vvm3
| style="text-align:center;" | vvm3
Line 419: Line 452:
| | 17
| | 17
| | 283.333
| | 283.333
|300.333
|362.667 (16A.AAB<sub>16</sub>)
| | 33/28
| | 33/28
| style="text-align:center;" | vm3
| style="text-align:center;" | vm3
Line 426: Line 461:
| | 18
| | 18
| | 300
| | 300
|318
|384 (180<sub>16</sub>)
| | 25/21
| | 25/21
| style="text-align:center;" | m3
| style="text-align:center;" | m3
Line 433: Line 470:
| | 19
| | 19
| | 316.667
| | 316.667
|335.667
|405.333 (195.555<sub>16</sub>)
| | 6/5
| | 6/5
| style="text-align:center;" | ^m3
| style="text-align:center;" | ^m3
Line 440: Line 479:
| | 20
| | 20
| | 333.333
| | 333.333
|353.333
|426.667 (1AA.AAB<sub>16</sub>)
| | 40/33
| | 40/33
| style="text-align:center;" | v~3
| style="text-align:center;" | v~3
Line 447: Line 488:
| | 21
| | 21
| | 350
| | 350
|371
|448 (1C0<sub>16</sub>)
| | 11/9
| | 11/9
| style="text-align:center;" | ~3
| style="text-align:center;" | ~3
Line 454: Line 497:
| | 22
| | 22
| | 366.667
| | 366.667
|388.667
|469.333 (1D5.555<sub>16</sub>)
| | 99/80
| | 99/80
| style="text-align:center;" | ^~3
| style="text-align:center;" | ^~3
Line 461: Line 506:
| | 23
| | 23
| | 383.333
| | 383.333
|406.333
|490.667 (1EA.AAB<sub>16</sub>)
| | 5/4
| | 5/4
| style="text-align:center;" | vM3
| style="text-align:center;" | vM3
Line 468: Line 515:
| | 24
| | 24
| | 400
| | 400
|424
|512 (200<sub>16</sub>)
| | 44/35
| | 44/35
| style="text-align:center;" | M3
| style="text-align:center;" | M3
Line 475: Line 524:
| | 25
| | 25
| | 416.667
| | 416.667
|441.667
|533.333 (215.555<sub>16</sub>)
| | 14/11
| | 14/11
| style="text-align:center;" | ^M3
| style="text-align:center;" | ^M3
Line 482: Line 533:
| | 26
| | 26
| | 433.333
| | 433.333
|459.333
|554.667 (22A.AAB<sub>16</sub>)
| | 9/7
| | 9/7
| style="text-align:center;" | ^^M3
| style="text-align:center;" | ^^M3
Line 489: Line 542:
| | 27
| | 27
| | 450
| | 450
|477
|576 (240<sub>16</sub>)
| | 35/27
| | 35/27
| style="text-align:center;" | ^<span style="font-size: 90%; vertical-align: super;">3</span>M3, v<span style="font-size: 90%; vertical-align: super;">3</span>4
| style="text-align:center;" | ^<span style="font-size: 90%; vertical-align: super;">3</span>M3, v<span style="font-size: 90%; vertical-align: super;">3</span>4
Line 498: Line 553:
| | 28
| | 28
| | 466.667
| | 466.667
|494.667
|597.333 (255.555<sub>16</sub>)
| | 21/16
| | 21/16
| style="text-align:center;" | vv4
| style="text-align:center;" | vv4
Line 505: Line 562:
| | 29
| | 29
| | 483.333
| | 483.333
|512.333
|618.667 (26A.AAB<sub>16</sub>)
| | 33/25
| | 33/25
| style="text-align:center;" | v4
| style="text-align:center;" | v4
Line 512: Line 571:
| | 30
| | 30
| | 500
| | 500
|530
|640 (280<sub>16</sub>)
| | 4/3
| | 4/3
| style="text-align:center;" | P4
| style="text-align:center;" | P4
Line 519: Line 580:
| | 31
| | 31
| | 516.667
| | 516.667
|547.667
|661.333 (295.555<sub>16</sub>)
| | 27/20
| | 27/20
| style="text-align:center;" | ^4
| style="text-align:center;" | ^4
Line 526: Line 589:
| | 32
| | 32
| | 533.333
| | 533.333
|565.333
|682.667 (2AA.AAB<sub>16</sub>)
| | 15/11
| | 15/11
| style="text-align:center;" | ^^4
| style="text-align:center;" | ^^4
Line 533: Line 598:
| | 33
| | 33
| | 550
| | 550
|583
|704 (2C0<sub>16</sub>)
| | 11/8
| | 11/8
| style="text-align:center;" | ^<span style="font-size: 90%; vertical-align: super;">3</span>4
| style="text-align:center;" | ^<span style="font-size: 90%; vertical-align: super;">3</span>4
Line 540: Line 607:
| | 34
| | 34
| | 566.667
| | 566.667
|600.667
|725.333 (2D5.555<sub>16</sub>)
| | 25/18
| | 25/18
| style="text-align:center;" | vvA4
| style="text-align:center;" | vvA4
Line 547: Line 616:
| | 35
| | 35
| | 583.333
| | 583.333
|618.333
|746.667 (2EA.AAB<sub>16</sub>)
| | 7/5
| | 7/5
| style="text-align:center;" | vA4, vd5
| style="text-align:center;" | vA4, vd5
Line 554: Line 625:
| | 36
| | 36
| | 600
| | 600
|636
|768 (300<sub>16</sub>)
| | 99/70
| | 99/70
| style="text-align:center;" | A4, d5
| style="text-align:center;" | A4, d5
Line 561: Line 634:
| | 37
| | 37
| | 616.667
| | 616.667
|653.667
|789.333 (315.555<sub>16</sub>)
| | 10/7
| | 10/7
| style="text-align:center;" | ^A4, ^d5
| style="text-align:center;" | ^A4, ^d5
Line 568: Line 643:
| | 38
| | 38
| | 633.333
| | 633.333
|671.333
|810.667 (32A.AAB<sub>16</sub>)
| | 36/25
| | 36/25
| style="text-align:center;" | ^^d5
| style="text-align:center;" | ^^d5
Line 575: Line 652:
| | 39
| | 39
| | 650
| | 650
|689
|832 (340<sub>16</sub>)
| | 16/11
| | 16/11
| style="text-align:center;" | v<span style="font-size: 90%; vertical-align: super;">3</span>5
| style="text-align:center;" | v<span style="font-size: 90%; vertical-align: super;">3</span>5
Line 582: Line 661:
| | 40
| | 40
| | 666.667
| | 666.667
|706.667
|853.333 (355.555<sub>16</sub>)
| | 22/15
| | 22/15
| style="text-align:center;" | vv5
| style="text-align:center;" | vv5
Line 589: Line 670:
| | 41
| | 41
| | 683.333
| | 683.333
|724.333
|874.667 (36A.AAB<sub>16</sub>)
| | 40/27
| | 40/27
| style="text-align:center;" | v5
| style="text-align:center;" | v5
Line 596: Line 679:
| | 42
| | 42
| | 700
| | 700
|742
|896 (380<sub>16</sub>)
| | 3/2
| | 3/2
| style="text-align:center;" | P5
| style="text-align:center;" | P5
Line 603: Line 688:
| | 43
| | 43
| | 716.667
| | 716.667
|759.667
|917.333 (395.555<sub>16</sub>)
| | 50/33
| | 50/33
| style="text-align:center;" | ^5
| style="text-align:center;" | ^5
Line 610: Line 697:
| | 44
| | 44
| | 733.333
| | 733.333
|777.333
|948.667 (3AA.AAB<sub>16</sub>)
| | 32/21
| | 32/21
| style="text-align:center;" | ^^5
| style="text-align:center;" | ^^5
Line 617: Line 706:
| | 45
| | 45
| | 750
| | 750
|795
|960 (3C0<sub>16</sub>)
| | 54/35
| | 54/35
| style="text-align:center;" | ^<span style="font-size: 90%; vertical-align: super;">3</span>5, v<span style="font-size: 90%; vertical-align: super;">3</span>m6
| style="text-align:center;" | ^<span style="font-size: 90%; vertical-align: super;">3</span>5, v<span style="font-size: 90%; vertical-align: super;">3</span>m6
Line 626: Line 717:
| | 46
| | 46
| | 766.667
| | 766.667
|812.667
|981.333 (3D5.555<sub>16</sub>)
| | 14/9
| | 14/9
| style="text-align:center;" | vvm6
| style="text-align:center;" | vvm6
Line 633: Line 726:
| | 47
| | 47
| | 783.333
| | 783.333
|830.333
|1002.667 (2EA.AAB<sub>16</sub>)
| | 11/7
| | 11/7
| style="text-align:center;" | vm6
| style="text-align:center;" | vm6
Line 640: Line 735:
| | 48
| | 48
| | 800
| | 800
|848
|1024 (400<sub>16</sub>)
| | 35/22
| | 35/22
| style="text-align:center;" | m6
| style="text-align:center;" | m6
Line 647: Line 744:
| | 49
| | 49
| | 816.667
| | 816.667
|865.667
|1045.333 (415.555<sub>16</sub>)
| | 8/5
| | 8/5
| style="text-align:center;" | ^m6
| style="text-align:center;" | ^m6
Line 654: Line 753:
| | 50
| | 50
| | 833.333
| | 833.333
|883.333
|1066.667 (42A.AAB<sub>16</sub>)
| | 81/50
| | 81/50
| style="text-align:center;" | v~6
| style="text-align:center;" | v~6
Line 661: Line 762:
| | 51
| | 51
| | 850
| | 850
|901
|1088 (440<sub>16</sub>)
| | 18/11
| | 18/11
| style="text-align:center;" | ~6
| style="text-align:center;" | ~6
Line 668: Line 771:
| | 52
| | 52
| | 866.667
| | 866.667
|918.667
|1109.333 (455.555<sub>16</sub>)
| | 33/20
| | 33/20
| style="text-align:center;" | ^~6
| style="text-align:center;" | ^~6
Line 675: Line 780:
| | 53
| | 53
| | 883.333
| | 883.333
|936.333
|1130.667 (46A.AAB<sub>16</sub>)
| | 5/3
| | 5/3
| style="text-align:center;" | vM6
| style="text-align:center;" | vM6
Line 682: Line 789:
| | 54
| | 54
| | 900
| | 900
|954
|1152 (480<sub>16</sub>)
| | 27/16
| | 27/16
| style="text-align:center;" | M6
| style="text-align:center;" | M6
Line 689: Line 798:
| | 55
| | 55
| | 916.667
| | 916.667
|971.667
|1173.333 (495.555<sub>16</sub>)
| | 56/33
| | 56/33
| style="text-align:center;" | ^M6
| style="text-align:center;" | ^M6
Line 696: Line 807:
| | 56
| | 56
| | 933.333
| | 933.333
|989.333
|1194.667 (4AA.AAB<sub>16</sub>)
| | 12/7
| | 12/7
| style="text-align:center;" | ^^M6
| style="text-align:center;" | ^^M6
Line 703: Line 816:
| | 57
| | 57
| | 950
| | 950
|1007
|1216 (4C0<sub>16</sub>)
| | 121/70
| | 121/70
| style="text-align:center;" | ^<span style="font-size: 90%; vertical-align: super;">3</span>M6, v<span style="font-size: 90%; vertical-align: super;">3</span>m7
| style="text-align:center;" | ^<span style="font-size: 90%; vertical-align: super;">3</span>M6, v<span style="font-size: 90%; vertical-align: super;">3</span>m7
Line 712: Line 827:
| | 58
| | 58
| | 966.667
| | 966.667
|1024.667
|1237.333 (4D5.555<sub>16</sub>)
| | 7/4
| | 7/4
| style="text-align:center;" | vvm7
| style="text-align:center;" | vvm7
Line 719: Line 836:
| | 59
| | 59
| | 983.333
| | 983.333
|1042.333
|1258.667 (4EA.AAB<sub>16</sub>)
| | 44/25
| | 44/25
| style="text-align:center;" | vm7
| style="text-align:center;" | vm7
Line 726: Line 845:
| | 60
| | 60
| | 1000
| | 1000
|1060
|1280 (500<sub>16</sub>)
| | 16/9
| | 16/9
| style="text-align:center;" | m7
| style="text-align:center;" | m7
Line 733: Line 854:
| | 61
| | 61
| | 1016.667
| | 1016.667
|1077.667
|1301.333 (515.555<sub>16</sub>)
| | 9/5
| | 9/5
| style="text-align:center;" | ^m7
| style="text-align:center;" | ^m7
Line 740: Line 863:
| | 62
| | 62
| | 1033.333
| | 1033.333
|1095.333
|1322.667 (52A.AAB<sub>16</sub>)
| | 20/11
| | 20/11
| style="text-align:center;" | v~7
| style="text-align:center;" | v~7
Line 747: Line 872:
| | 63
| | 63
| | 1050
| | 1050
|1113
|1344 (540<sub>16</sub>)
| | 11/6
| | 11/6
| style="text-align:center;" | ~7
| style="text-align:center;" | ~7
Line 754: Line 881:
| | 64
| | 64
| | 1066.667
| | 1066.667
|1130.667
|1365.333 (555.555<sub>16</sub>)
| | 50/27
| | 50/27
| style="text-align:center;" | ^~7
| style="text-align:center;" | ^~7
Line 761: Line 890:
| | 65
| | 65
| | 1083.333
| | 1083.333
|1148.333
|1386.667 (56A.AAB<sub>16</sub>)
| | 15/8
| | 15/8
| style="text-align:center;" | vM7
| style="text-align:center;" | vM7
Line 768: Line 899:
| | 66
| | 66
| | 1100
| | 1100
|1166
|1408 (580<sub>16</sub>)
| | 66/35
| | 66/35
| style="text-align:center;" | M7
| style="text-align:center;" | M7
Line 775: Line 908:
| | 67
| | 67
| | 1116.667
| | 1116.667
|1183.667
|1429.333 (595.555<sub>16</sub>)
| | 21/11
| | 21/11
| style="text-align:center;" | ^M7
| style="text-align:center;" | ^M7
Line 782: Line 917:
| | 68
| | 68
| | 1133.333
| | 1133.333
|1201.333
|1450.667 (5AA.AAB<sub>16</sub>)
| | 27/14
| | 27/14
| style="text-align:center;" | ^^M7
| style="text-align:center;" | ^^M7
Line 789: Line 926:
| | 69
| | 69
| | 1150
| | 1150
|1219
|1472 (5C0<sub>16</sub>)
| | 35/18
| | 35/18
| style="text-align:center;" | ^<span style="font-size: 90%; vertical-align: super;">3</span>M7, v<span style="font-size: 90%; vertical-align: super;">3</span>8
| style="text-align:center;" | ^<span style="font-size: 90%; vertical-align: super;">3</span>M7, v<span style="font-size: 90%; vertical-align: super;">3</span>8
Line 798: Line 937:
| | 70
| | 70
| | 1166.667
| | 1166.667
|1236.667
|1493.333 (5D5.555<sub>16</sub>)
| | 49/25
| | 49/25
| style="text-align:center;" | vv8
| style="text-align:center;" | vv8
Line 805: Line 946:
| | 71
| | 71
| | 1183.333
| | 1183.333
|1254.333
|1514.667 (5EA.AAB<sub>16</sub>)
| | 99/50
| | 99/50
| style="text-align:center;" | v8
| style="text-align:center;" | v8
Line 812: Line 955:
| | 72
| | 72
| | 1200
| | 1200
|1272
|1536 (600<sub>16</sub>)
| | 2/1
| | 2/1
| style="text-align:center;" | P8
| style="text-align:center;" | P8

Revision as of 19:55, 19 May 2019


72-tone equal temperament, or 72-edo, divides the octave into 72 steps or moria. This produces a twelfth-tone tuning, with the whole tone measuring 200 cents, the same as in 12-tone equal temperament. 72-tone is also a superset of 24-tone equal temperament, a common and standard tuning of Arabic music, and has itself been used to tune Turkish music.

Composers that used 72-tone include Alois Hába, Ivan Wyschnegradsky, Julián Carillo (who is better associated with 96-edo), Iannis Xenakis, Ezra Sims, James Tenney and the jazz musician Joe Maneri.

72-tone equal temperament approximates 11-limit just intonation exceptionally well, is consistent in the 17-limit, and is the ninth Zeta integral tuning. The octave, fifth and fourth are the same size as they would be in 12-tone, 72, 42 and 30 steps respectively, but the major third (5/4) measures 23 steps, not 24, and other major intervals are one step flat of 12-et while minor ones are one step sharp. The septimal minor seventh (7/4) is 58 steps, while the undecimal semiaugmented fourth (11/8) is 33.

72 is an excellent tuning for miracle temperament, especially the 11-limit version, and the related rank three temperament prodigy, and is a good tuning for other temperaments and scales, including wizard, harry, catakleismic, compton, unidec and tritikleismic.

Commas

Commas tempered out by 72edo include...

3-limit
Pythagorean comma = 531441/524288 = |-19 12>
5-limit
kleisma = 15625/15552 = |-6 -5 6>

ampersand = 34171875/33554432 = |-25 7 6>

graviton = 129140163/128000000 = |-13 17 -6>

ennealimma = 7629394531250/7625597484987 = |1 -27 18>

7-limit 11-limit 13-limit
...............................

225/224

1029/1024

2401/2400

4375/4374

16875/16807

19683/19600

420175/419904

250047/250000

.......................

243/242

385/384

441/440

540/539

1375/1372

3025/3024

4000/3993

6250/6237

9801/9800

.......................

169/168

325/324

351/350

364/363

625/624

676/675

729/728

1001/1000

1575/1573

1716/1715

2080/2079

6656/6655

Temperaments

It provides the optimal patent val for miracle and wizard in the 7-limit, miracle, catakleismic, bikleismic, compton, ennealimnic, ennealiminal, enneaportent, marvolo and catalytic in the 11-limit, and catakleismic, bikleismic, compton, comptone, enneaportent, ennealim, catalytic, marvolo, manna, hendec, lizard, neominor, hours, and semimiracle in the 13-limit.

See also List of edo-distinct 72et rank two temperaments.

Harmonic Scale

Mode 8 of the harmonic series -- overtones 8 through 16, octave repeating -- is well-represented in 72edo. Note that all the different step sizes are distinguished, except for 13:12 and 14:13 (conflated to 8\72edo, 133.3 cents) and 15:14 and 16:15 (conflated to 7\72edo, 116.7 cents, the generator for miracle temperament).

Overtones in "Mode 8": 8 9 10 11 12 13 14 15 16
...as JI Ratio from 1/1: 1/1 9/8 5/4 11/8 3/2 13/8 7/4 15/8 2/1
...in cents: 0 203.9 386.3 551.3 702.0 840.5 968.8 1088.3 1200.0
Nearest degree of 72edo: 0 12 23 33 42 50 58 65 72
...in cents: 0 200.0 383.3 550.0 700.0 833.3 966.7 1083.3 1200.0
Steps as Freq. Ratio: 9:8 10:9 11:10 12:11 13:12 14:13 15:14 16:15
...in cents: 203.9 182.4 165.0 150.6 138.6 128.3 119.4 111.7
Nearest degree of 72edo: 12 11 10 9 8 8 7 7
...in cents: 200.0 183.3 166.7 150.0 133.3 133.3 116.7 116.7

Intervals

degrees cents value pions 7mus approximate ratios (11-limit) ups and downs notation
0 1/1 P1 perfect unison D
1 16.667 17.667 21.333 (15.55516) 81/80 ^1 up unison D^
2 33.333 35.333 42.667 (2A.AAB16) 45/44 ^^ double-up unison D^^
3 50 53 64 (4016) 33/32 ^31, v3m2 triple-up unison,

triple-down minor 2nd

D^3, Ebv3
4 66.667 70.667 85.333 (55.55516) 25/24 vvm2 double-downminor 2nd Ebvv
5 83.333 88.333 106.667 (6A.AAB16) 21/20 vm2 downminor 2nd Ebv
6 100 106 128 (8016) 35/33 m2 minor 2nd Eb
7 116.667 123.667 149.333 (95.55516) 15/14 ^m2 upminor 2nd Eb^
8 133.333 141.333 170.667 (AA.AAB16) 27/25 v~2 downmid 2nd Eb^^
9 150 159 192 (C016) 12/11 ~2 mid 2nd Ev3
10 166.667 176.667 213.333 (D5.55516) 11/10 ^~2 upmid 2nd Evv
11 183.333 194.333 234.667 (EA.AAB16) 10/9 vM2 downmajor 2nd Ev
12 200 212 256 (10016) 9/8 M2 major 2nd E
13 216.667 229.667 277.333 (115.55516) 25/22 ^M2 upmajor 2nd E^
14 233.333 247.333 298.667 (12A.AAB16) 8/7 ^^M2 double-upmajor 2nd E^^
15 250 265 320 (14016) 81/70 ^3M2, v3m3 triple-up major 2nd,

triple-down minor 3rd

E^3, Fv3
16 266.667 282.333 341.333 (155.55516) 7/6 vvm3 double-downminor 3rd Fvv
17 283.333 300.333 362.667 (16A.AAB16) 33/28 vm3 downminor 3rd Fv
18 300 318 384 (18016) 25/21 m3 minor 3rd F
19 316.667 335.667 405.333 (195.55516) 6/5 ^m3 upminor 3rd F^
20 333.333 353.333 426.667 (1AA.AAB16) 40/33 v~3 downmid 3rd F^^
21 350 371 448 (1C016) 11/9 ~3 mid 3rd F^3
22 366.667 388.667 469.333 (1D5.55516) 99/80 ^~3 upmid 3rd F#vv
23 383.333 406.333 490.667 (1EA.AAB16) 5/4 vM3 downmajor 3rd F#v
24 400 424 512 (20016) 44/35 M3 major 3rd F#
25 416.667 441.667 533.333 (215.55516) 14/11 ^M3 upmajor 3rd F#^
26 433.333 459.333 554.667 (22A.AAB16) 9/7 ^^M3 double-upmajor 3rd F#^^
27 450 477 576 (24016) 35/27 ^3M3, v34 triple-up major 3rd,

triple-down 4th

F#^3, Gv3
28 466.667 494.667 597.333 (255.55516) 21/16 vv4 double-down 4th Gvv
29 483.333 512.333 618.667 (26A.AAB16) 33/25 v4 down 4th Gv
30 500 530 640 (28016) 4/3 P4 perfect 4th G
31 516.667 547.667 661.333 (295.55516) 27/20 ^4 up 4th G^
32 533.333 565.333 682.667 (2AA.AAB16) 15/11 ^^4 double-up 4th G^^
33 550 583 704 (2C016) 11/8 ^34 triple-up 4th G^3
34 566.667 600.667 725.333 (2D5.55516) 25/18 vvA4 double-down aug 4th G#vv
35 583.333 618.333 746.667 (2EA.AAB16) 7/5 vA4, vd5 downaug 4th, updim 5th G#v, Abv
36 600 636 768 (30016) 99/70 A4, d5 aug 4th, dim 5th G#, Ab
37 616.667 653.667 789.333 (315.55516) 10/7 ^A4, ^d5 upaug 4th, downdim 5th G#^, Ab^
38 633.333 671.333 810.667 (32A.AAB16) 36/25 ^^d5 double-updim 5th Ab^^
39 650 689 832 (34016) 16/11 v35 triple-down 5th Av3
40 666.667 706.667 853.333 (355.55516) 22/15 vv5 double-down 5th Avv
41 683.333 724.333 874.667 (36A.AAB16) 40/27 v5 down 5th Av
42 700 742 896 (38016) 3/2 P5 perfect 5th A
43 716.667 759.667 917.333 (395.55516) 50/33 ^5 up 5th A^
44 733.333 777.333 948.667 (3AA.AAB16) 32/21 ^^5 double-up 5th A^^
45 750 795 960 (3C016) 54/35 ^35, v3m6 triple-up 5th,

triple-down minor 6th

A^3, Bbv3
46 766.667 812.667 981.333 (3D5.55516) 14/9 vvm6 double-downminor 6th Bbvv
47 783.333 830.333 1002.667 (2EA.AAB16) 11/7 vm6 downminor 6th Bbv
48 800 848 1024 (40016) 35/22 m6 minor 6th Bb
49 816.667 865.667 1045.333 (415.55516) 8/5 ^m6 upminor 6th Bb^
50 833.333 883.333 1066.667 (42A.AAB16) 81/50 v~6 downmid 6th Bb^^
51 850 901 1088 (44016) 18/11 ~6 mid 6th Bv3
52 866.667 918.667 1109.333 (455.55516) 33/20 ^~6 upmid 6th Bvv
53 883.333 936.333 1130.667 (46A.AAB16) 5/3 vM6 downmajor 6th Bv
54 900 954 1152 (48016) 27/16 M6 major 6th B
55 916.667 971.667 1173.333 (495.55516) 56/33 ^M6 upmajor 6th B^
56 933.333 989.333 1194.667 (4AA.AAB16) 12/7 ^^M6 double-upmajor 6th B^^
57 950 1007 1216 (4C016) 121/70 ^3M6, v3m7 triple-up major 6th,

triple-down minor 7th

B^3, Cv3
58 966.667 1024.667 1237.333 (4D5.55516) 7/4 vvm7 double-downminor 7th Cvv
59 983.333 1042.333 1258.667 (4EA.AAB16) 44/25 vm7 downminor 7th Cv
60 1000 1060 1280 (50016) 16/9 m7 minor 7th C
61 1016.667 1077.667 1301.333 (515.55516) 9/5 ^m7 upminor 7th C^
62 1033.333 1095.333 1322.667 (52A.AAB16) 20/11 v~7 downmid 7th C^^
63 1050 1113 1344 (54016) 11/6 ~7 mid 7th C^3
64 1066.667 1130.667 1365.333 (555.55516) 50/27 ^~7 upmid 7th C#vv
65 1083.333 1148.333 1386.667 (56A.AAB16) 15/8 vM7 downmajor 7th C#v
66 1100 1166 1408 (58016) 66/35 M7 major 7th C#
67 1116.667 1183.667 1429.333 (595.55516) 21/11 ^M7 upmajor 7th C#^
68 1133.333 1201.333 1450.667 (5AA.AAB16) 27/14 ^^M7 double-upmajor 7th C#^^
69 1150 1219 1472 (5C016) 35/18 ^3M7, v38 triple-up major 7th,

triple-down octave

C#^3, Dv3
70 1166.667 1236.667 1493.333 (5D5.55516) 49/25 vv8 double-down octave Dvv
71 1183.333 1254.333 1514.667 (5EA.AAB16) 99/50 v8 down octave Dv
72 1200 1272 1536 (60016) 2/1 P8 perfect octave D

Combining ups and downs notation with color notation, qualities can be loosely associated with colors:

quality color monzo format examples
double-down minor zo {a, b, 0, 1} 7/6, 7/4
minor fourthward wa {a, b}, b < -1 32/27, 16/9
upminor gu {a, b, -1} 6/5, 9/5
mid ilo {a, b, 0, 0, 1} 11/9, 11/6
" lu {a, b, 0, 0, -1} 12/11, 18/11
downmajor yo {a, b, 1} 5/4, 5/3
major fifthward wa {a, b}, b > 1 9/8, 27/16
double-up major ru {a, b, 0, -1} 9/7, 12/7

All 72edo chords can be named using ups and downs. Here are the zo, gu, ilo, yo and ru triads:

color of the 3rd JI chord notes as edosteps notes of C chord written name spoken name
zo 6:7:9 0-16-42 C Ebvv G C.vvm C double-down minor
gu 10:12:15 0-19-42 C Eb^ G C.^m C upminor
ilo 18:22:27 0-21-42 C Ev3 G C~ C mid
yo 4:5:6 0-23-42 C Ev G C.v C downmajor or C dot down
ru 14:18:27 0-26-42 C E^^ G C.^^ C double-upmajor or C dot double-up

For a more complete list, see Ups and Downs Notation - Chord names in other EDOs.

Linear temperaments

Periods per octave Generator Names
1 1\72 quincy
1 5\72 marvolo
1 7\72 miracle/benediction/manna
1 11\72
1 13\72
1 17\72 neominor
1 19\72 catakleismic
1 23\72
1 25\72 sqrtphi
1 29\72
1 31\72 marvo/zarvo
1 35\72 cotritone
2 1\72
2 5\72 harry
2 7\72
2 11\72 unidec/hendec
2 13\72 wizard/lizard/gizzard
2 17\72
3 1\72
3 5\72 tritikleismic
3 7\72
3 11\72 mirkat
4 1\72 quadritikleismic
4 5\72
4 7\72
6 1\72
6 5\72
8 1\72 octoid
8 2\72 octowerck
8 4\72
9 1\72
9 3\72 ennealimmal/ennealimmic
12 1\72 compton
18 1\72 hemiennealimmal
24 1\72 hours
36 1\72

Z function

72edo is the ninth zeta integral edo, as well as being a peak and gap edo, and the maximum value of the Z function in the region near 72 occurs at 71.9506, giving an octave of 1200.824 cents, the stretched octaves of the zeta tuning. Below is a plot of Z in the region around 72.

plot72.png

Music

Kotekant play by Gene Ward Smith

Twinkle canon – 72 edo by Claudi Meneghin

Lazy Sunday by Jake Freivald in the lazysunday scale.

June Gloom #9 by Prent Rodgers

Scales

smithgw72a, smithgw72b, smithgw72c, smithgw72d, smithgw72e, smithgw72f, smithgw72g, smithgw72h, smithgw72i, smithgw72j

blackjack, miracle_8, miracle_10, miracle_12, miracle_12a, miracle_24hi, miracle_24lo

keenanmarvel, xenakis_chrome, xenakis_diat, xenakis_schrome

Euler(24255) genus in 72 equal

JuneGloom

External links