8ed16/15: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Xenllium (talk | contribs)
Tags: Mobile edit Mobile web edit
No edit summary
Line 7: Line 7:
|-
|-
! rowspan="2" | degree
! rowspan="2" | degree
! colspan="6" | cents value
! colspan="7" | cents value
! rowspan="2" | corresponding <br>JI intervals
! rowspan="2" | corresponding <br>JI intervals
|-
|-
Line 16: Line 16:
! | [[136edt|136ED3]]
! | [[136edt|136ED3]]
! | 75ED11/6
! | 75ED11/6
!50EDF
|-
|-
| | 0
| | 0
Line 24: Line 25:
| | 0.000
| | 0.000
| | 0.000
| | 0.000
|0.000
| | '''exact [[1/1]]'''
| | '''exact [[1/1]]'''
|-
|-
Line 33: Line 35:
| | 13.985
| | 13.985
| | 13.992
| | 13.992
|14.039
| | [[126/125]]
| | [[126/125]]
|-
|-
Line 42: Line 45:
| | 27.970
| | 27.970
| | 27.983
| | 27.983
|28.078
| | [[64/63]]
| | [[64/63]]
|-
|-
Line 51: Line 55:
| | 41.955
| | 41.955
| | 41.975
| | 41.975
|42.117
| | [[128/125]], 169/165, 165/161
| | [[128/125]], 169/165, 165/161
|-
|-
Line 60: Line 65:
| | 55.940
| | 55.940
| | 55.966
| | 55.966
|56.156
| | 95/92
| | 95/92
|-
|-
Line 69: Line 75:
| | 69.925
| | 69.925
| | 69.958
| | 69.958
|70.1955
| | 51/49, [[25/24]]
| | 51/49, [[25/24]]
|-
|-
Line 78: Line 85:
| | 83.910
| | 83.910
| | 83.949
| | 83.949
|84.235
| | 85/81, [[21/20]]
| | 85/81, [[21/20]]
|-
|-
Line 87: Line 95:
| | 97.895
| | 97.895
| | 97.941
| | 97.941
|98.274
| | 55/52, 128/121, 91/86
| | 55/52, 128/121, 91/86
|-
|-
Line 96: Line 105:
| | 111.880
| | 111.880
| | 111.932
| | 111.932
|112.313
| | [[16/15]]
| | [[16/15]]
|-
|-
Line 105: Line 115:
| | 125.865
| | 125.865
| | 125.924
| | 125.924
|126.352
| | [[14/13]]
| | [[14/13]]
|-
|-
Line 114: Line 125:
| | 139.850
| | 139.850
| | 139.915
| | 139.915
|140.391
| | [[13/12]]
| | [[13/12]]
|-
|-
Line 123: Line 135:
| | 153.835
| | 153.835
| | 153.907
| | 153.907
|154.43
| | 59/54, 47/43, [[35/32]]
| | 59/54, 47/43, [[35/32]]
|-
|-
Line 132: Line 145:
| | 167.820
| | 167.820
| | 167.898
| | 167.898
|168.469
| | 76/69, 65/59
| | 76/69, 65/59
|-
|-
Line 141: Line 155:
| | 181.805
| | 181.805
| | 181.890
| | 181.890
|182.508
| | [[10/9]]
| | [[10/9]]
|-
|-
Line 150: Line 165:
| | 195.789
| | 195.789
| | 195.881
| | 195.881
|196.547
| | [[28/25]]
| | [[28/25]]
|-
|-
Line 159: Line 175:
| | 209.774
| | 209.774
| | 209.873
| | 209.873
|210.5865
| | 44/39, 35/31
| | 44/39, 35/31
|-
|-
Line 168: Line 185:
| | 223.759
| | 223.759
| | 223.864
| | 223.864
|224.626
| | 33/29
| | 33/29
|-
|-
Line 177: Line 195:
| | 237.744
| | 237.744
| | 237.856
| | 237.856
|238.665
| | 39/34<br>(pseudo-[[8/7]])
| | 39/34<br>(pseudo-[[8/7]])
|-
|-
Line 186: Line 205:
| | 251.729
| | 251.729
| | 251.847
| | 251.847
|252.704
| | 37/32, [[22/19]]
| | 37/32, [[22/19]]
|-
|-
Line 195: Line 215:
| | 265.714
| | 265.714
| | 265.839
| | 265.839
|266.743
| | [[7/6]]
| | [[7/6]]
|-
|-
Line 204: Line 225:
| | 279.699
| | 279.699
| | 279.830
| | 279.830
|280.78
| | 27/23, 47/40, [[20/17]]
| | 27/23, 47/40, [[20/17]]
|-
|-
Line 213: Line 235:
| | 293.684
| | 293.684
| | 293.822
| | 293.822
|294.821
| | 45/38, 77/65, [[32/27]]
| | 45/38, 77/65, [[32/27]]
|-
|-
Line 222: Line 245:
| | 307.669
| | 307.669
| | 307.813
| | 307.813
|308.86.
| | 80/67, 43/36
| | 80/67, 43/36
|-
|-
Line 231: Line 255:
| | 321.654
| | 321.654
| | 321.805
| | 321.805
|322.899
| | 65/54<br>(pseudo-[[6/5]])
| | 65/54<br>(pseudo-[[6/5]])
|-
|-
Line 240: Line 265:
| | 335.639
| | 335.639
| | 335.796
| | 335.796
|336.938
| | [[17/14]]
| | [[17/14]]
|-
|-
Line 249: Line 275:
| | 349.624
| | 349.624
| | 349.788
| | 349.788
|350.9775
| | [[11/9]], 104/85, [[60/49]]
| | [[11/9]], 104/85, [[60/49]]
|-
|-
Line 258: Line 285:
| | 363.609
| | 363.609
| | 363.779
| | 363.779
|365.017
| | 37/30
| | 37/30
|-
|-
Line 267: Line 295:
| | 377.594
| | 377.594
| | 377.771
| | 377.771
|379.056
| | 46/37, 97/78
| | 46/37, 97/78
|-
|-
Line 276: Line 305:
| | 391.579
| | 391.579
| | 391.762
| | 391.762
|393.095
| | 94/75, 89/71<br>(pseudo-[[5/4]])
| | 94/75, 89/71<br>(pseudo-[[5/4]])
|-
|-
Line 285: Line 315:
| | 405.564
| | 405.564
| | 405.754
| | 405.754
|407.134
| | [[24/19]], 91/72
| | [[24/19]], 91/72
|-
|-
Line 294: Line 325:
| | 419.549
| | 419.549
| | 419.745
| | 419.745
|421.173
| | [[14/11]], 65/51, [[51/40]]
| | [[14/11]], 65/51, [[51/40]]
|-
|-
Line 303: Line 335:
| | 433.534
| | 433.534
| | 433.737
| | 433.737
|435.212
| | 104/81, 113/88, 122/95, [[9/7]]
| | 104/81, 113/88, 122/95, [[9/7]]
|-
|-
Line 312: Line 345:
| | 447.519
| | 447.519
| | 447.728
| | 447.728
|449.251
| | [[22/17]]
| | [[22/17]]
|-
|-
Line 321: Line 355:
| | 461.504
| | 461.504
| | 461.720
| | 461.720
|463.29
| | [[17/13]]
| | [[17/13]]
|-
|-
Line 330: Line 365:
| | 475.489
| | 475.489
| | 475.711
| | 475.711
|477.329
| |  
| |  
|-
|-
Line 339: Line 375:
| | 489.474
| | 489.474
| | 489.703
| | 489.703
|491.3685
| |  
| |  
|-
|-
Line 348: Line 385:
| | 503.459
| | 503.459
| | 503.694
| | 503.694
|505.408
| |  
| |  
|-
|-
Line 357: Line 395:
| | 517.444
| | 517.444
| | 517.686
| | 517.686
|519.448
| |  
| |  
|-
|-
Line 366: Line 405:
| | 531.429
| | 531.429
| | 531.677
| | 531.677
|533.486
| |  
| |  
|-
|-
Line 375: Line 415:
| | 545.414
| | 545.414
| | 545.669
| | 545.669
|547.525
| |  
| |  
|-
|-
Line 384: Line 425:
| | 559.399
| | 559.399
| | 559.660
| | 559.660
|561.564
| |  
| |  
|-
|-
Line 393: Line 435:
| | 573.383
| | 573.383
| | 573.652
| | 573.652
|575.603
| |  
| |  
|-
|-
Line 402: Line 445:
| | 587.368
| | 587.368
| | 587.643
| | 587.643
|589.642
| | [[7/5]]
| | [[7/5]]
|-
|-
Line 411: Line 455:
| | 601.353
| | 601.353
| | 601.635
| | 601.635
|603.681
| | [[17/12]]
| | [[17/12]]
|-
|-
Line 420: Line 465:
| | 615.338
| | 615.338
| | 615.626
| | 615.626
|617.72
| |  
| |  
|-
|-
Line 429: Line 475:
| | 629.323
| | 629.323
| | 629.618
| | 629.618
|631.7595
| |  
| |  
|-
|-
Line 438: Line 485:
| | 643.308
| | 643.308
| | 643.609
| | 643.609
|645.799
| |  
| |  
|-
|-
Line 447: Line 495:
| | 657.293
| | 657.293
| | 657.601
| | 657.601
|659.838
| |  
| |  
|-
|-
Line 456: Line 505:
| | 671.278
| | 671.278
| | 671.592
| | 671.592
|673.877
| |  
| |  
|-
|-
Line 465: Line 515:
| | 685.263
| | 685.263
| | 685.584
| | 685.584
|687.916
| |  
| |  
|-
|-
Line 474: Line 525:
| | 699.248
| | 699.248
| | 699.575
| | 699.575
|701.955
| | [[3/2]]
| | [[3/2]]
|-
|-
Line 483: Line 535:
| | 713.233
| | 713.233
| | 713.567
| | 713.567
|715.994
| |  
| |  
|-
|-
Line 492: Line 545:
| | 727.218
| | 727.218
| | 727.558
| | 727.558
|730.033
| |  
| |  
|-
|-
Line 501: Line 555:
| | 741.203
| | 741.203
| | 741.550
| | 741.550
|744.072
| |  
| |  
|-
|-
Line 510: Line 565:
| | 755.188
| | 755.188
| | 755.541
| | 755.541
|758.111
| |  
| |  
|-
|-
Line 519: Line 575:
| | 769.173
| | 769.173
| | 769.533
| | 769.533
|772.1505
| |  
| |  
|-
|-
Line 528: Line 585:
| | 783.158
| | 783.158
| | 783.524
| | 783.524
|786.19
| |  
| |  
|-
|-
Line 537: Line 595:
| | 797.143
| | 797.143
| | 797.516
| | 797.516
|800.229
| |  
| |  
|-
|-
Line 546: Line 605:
| | 811.128
| | 811.128
| | 811.507
| | 811.507
|814.268
| | [[8/5]]
| | [[8/5]]
|-
|-
Line 555: Line 615:
| | 825.113
| | 825.113
| | 825.499
| | 825.499
|828.307
| |  
| |  
|-
|-
Line 564: Line 625:
| | 839.098
| | 839.098
| | 839.490
| | 839.490
|842.346
| | [[13/8]]
| | [[13/8]]
|-
|-
Line 573: Line 635:
| | 853.083
| | 853.083
| | 853.482
| | 853.482
|856.385
| |  
| |  
|-
|-
Line 582: Line 645:
| | 867.068
| | 867.068
| | 867.473
| | 867.473
|870.424
| |  
| |  
|-
|-
Line 591: Line 655:
| | 881.053
| | 881.053
| | 881.465
| | 881.465
|884.463
| | [[5/3]]
| | [[5/3]]
|-
|-
Line 600: Line 665:
| | 895.038
| | 895.038
| | 895.456
| | 895.456
|898.502
| |  
| |  
|-
|-
Line 609: Line 675:
| | 909.023
| | 909.023
| | 909.448
| | 909.448
|912.5415
| |  
| |  
|-
|-
Line 618: Line 685:
| | 923.008
| | 923.008
| | 923.439
| | 923.439
|926.581
| |  
| |  
|-
|-
Line 627: Line 695:
| | 936.993
| | 936.993
| | 937.431
| | 937.431
|940.692
| |  
| |  
|-
|-
Line 636: Line 705:
| | 950.978
| | 950.978
| | 951.422
| | 951.422
|954.659
| |  
| |  
|-
|-
Line 645: Line 715:
| | 964.962
| | 964.962
| | 965.414
| | 965.414
|968.698
| | [[7/4]]
| | [[7/4]]
|-
|-
Line 654: Line 725:
| | 978.947
| | 978.947
| | 979.405
| | 979.405
|982.737
| |  
| |  
|-
|-
Line 663: Line 735:
| | 992.932
| | 992.932
| | 993.397
| | 993.397
|996.776
| | [[16/9]]
| | [[16/9]]
|-
|-
Line 672: Line 745:
| | 1006.917
| | 1006.917
| | 1007.388
| | 1007.388
|1010.815
| | [[25/14]]
| | [[25/14]]
|-
|-
Line 681: Line 755:
| | 1020.902
| | 1020.902
| | 1021.380
| | 1021.380
|1024.854
| | [[9/5]]
| | [[9/5]]
|-
|-
Line 690: Line 765:
| | 1034.887
| | 1034.887
| | 1035.371
| | 1035.371
|1038.893
| |  
| |  
|-
|-
Line 699: Line 775:
| | 1048.872
| | 1048.872
| | 1049.363
| | 1049.363
|1052.9325
| | [[11/6]]
| | [[11/6]]
|-
|-
Line 708: Line 785:
| | 1062.857
| | 1062.857
| | 1063.354
| | 1063.354
|1033.972
| |  
| |  
|-
|-
Line 717: Line 795:
| | 1076.842
| | 1076.842
| | 1077.346
| | 1077.346
|1081.011
| | [[28/15]]
| | [[28/15]]
|-
|-
Line 726: Line 805:
| | 1090.827
| | 1090.827
| | 1091.337
| | 1091.337
|1095.05
| | [[15/8]]
| | [[15/8]]
|-
|-
Line 735: Line 815:
| | 1104.812
| | 1104.812
| | 1105.329
| | 1105.329
|1109.089
| |  
| |  
|-
|-
Line 744: Line 825:
| | 1118.797
| | 1118.797
| | 1119.320
| | 1119.320
|1123.128
| |  
| |  
|-
|-
Line 753: Line 835:
| | 1132.782
| | 1132.782
| | 1133.312
| | 1133.312
|1137.167
| |  
| |  
|-
|-
Line 762: Line 845:
| | 1146.767
| | 1146.767
| | 1147.303
| | 1147.303
|1151.206
| |  
| |  
|-
|-
Line 771: Line 855:
| | 1160.752
| | 1160.752
| | 1161.295
| | 1161.295
|1165.245
| |  
| |  
|-
|-
Line 780: Line 865:
| | 1174.737
| | 1174.737
| | 1175.286
| | 1175.286
|1179.284
| |  
| |  
|-
|-
Line 789: Line 875:
| | 1188.722
| | 1188.722
| | 1189.278
| | 1189.278
|1193.3235
| |  
| |  
|-
|-
Line 798: Line 885:
| | 1202.707
| | 1202.707
| | 1203.270
| | 1203.270
|1207.363
| | [[Octave|2/1]]
| | [[Octave|2/1]]
|}
|}

Revision as of 02:10, 24 February 2019

Delta scale is the equal division of the classic diatonic semitone (16/15) into eight parts of 13.9664 cents each, corresponding to 85.9204 edo. It is inconsistent to the 5-limit and higher limit, as 3/2, 5/4, and 6/5 fall on the 50th, 28th, and 23rd steps in the best direct mapping, respectively.

Lookalikes: 86edo, 136ed3, 50edf

Intervals

degree cents value corresponding
JI intervals
72ED25/14 86EDO 8ED16/15 222ED6 136ED3 75ED11/6 50EDF
0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 exact 1/1
1 13.942 13.953 13.966 13.973 13.985 13.992 14.039 126/125
2 27.883 27.907 27.933 27.946 27.970 27.983 28.078 64/63
3 41.825 41.860 41.899 41.918 41.955 41.975 42.117 128/125, 169/165, 165/161
4 55.767 55.814 55.866 55.891 55.940 55.966 56.156 95/92
5 69.708 69.767 69.832 69.864 69.925 69.958 70.1955 51/49, 25/24
6 83.650 83.721 83.798 83.837 83.910 83.949 84.235 85/81, 21/20
7 97.592 97.674 97.765 97.809 97.895 97.941 98.274 55/52, 128/121, 91/86
8 111.534 111.628 111.731 111.782 111.880 111.932 112.313 16/15
9 125.475 125.581 125.698 125.755 125.865 125.924 126.352 14/13
10 139.417 139.535 139.664 139.728 139.850 139.915 140.391 13/12
11 153.359 153.488 153.631 153.700 153.835 153.907 154.43 59/54, 47/43, 35/32
12 167.300 167.442 167.597 167.673 167.820 167.898 168.469 76/69, 65/59
13 181.242 181.395 181.563 181.646 181.805 181.890 182.508 10/9
14 195.184 195.349 195.530 195.619 195.789 195.881 196.547 28/25
15 209.125 209.302 209.496 209.592 209.774 209.873 210.5865 44/39, 35/31
16 223.067 223.256 223.463 223.564 223.759 223.864 224.626 33/29
17 237.009 237.209 237.429 237.537 237.744 237.856 238.665 39/34
(pseudo-8/7)
18 250.950 251.163 251.395 251.510 251.729 251.847 252.704 37/32, 22/19
19 264.892 265.116 265.362 265.483 265.714 265.839 266.743 7/6
20 278.834 279.070 279.328 279.455 279.699 279.830 280.78 27/23, 47/40, 20/17
21 292.775 293.023 293.295 293.428 293.684 293.822 294.821 45/38, 77/65, 32/27
22 306.717 306.977 307.261 307.401 307.669 307.813 308.86. 80/67, 43/36
23 320.659 320.930 321.227 321.374 321.654 321.805 322.899 65/54
(pseudo-6/5)
24 334.601 334.884 335.194 335.346 335.639 335.796 336.938 17/14
25 348.542 348.837 349.160 349.319 349.624 349.788 350.9775 11/9, 104/85, 60/49
26 362.484 362.791 363.127 363.292 363.609 363.779 365.017 37/30
27 376.426 376.744 377.093 377.265 377.594 377.771 379.056 46/37, 97/78
28 390.367 390.698 391.059 391.238 391.579 391.762 393.095 94/75, 89/71
(pseudo-5/4)
29 404.309 404.651 405.026 405.210 405.564 405.754 407.134 24/19, 91/72
30 418.251 418.605 418.992 419.183 419.549 419.745 421.173 14/11, 65/51, 51/40
31 432.192 432.558 432.959 433.156 433.534 433.737 435.212 104/81, 113/88, 122/95, 9/7
32 446.134 446.512 446.925 447.129 447.519 447.728 449.251 22/17
33 460.076 460.465 460.892 461.101 461.504 461.720 463.29 17/13
34 474.017 474.419 474.858 475.074 475.489 475.711 477.329
35 487.959 488.372 488.824 489.047 489.474 489.703 491.3685
36 501.901 502.326 502.791 503.020 503.459 503.694 505.408
37 515.842 516.279 516.757 516.993 517.444 517.686 519.448
38 529.784 530.233 530.724 530.965 531.429 531.677 533.486
39 543.726 544.186 544.690 544.938 545.414 545.669 547.525
40 557.668 558.140 558.656 558.911 559.399 559.660 561.564
41 571.609 572.093 572.623 572.884 573.383 573.652 575.603
42 585.551 586.047 586.589 586.856 587.368 587.643 589.642 7/5
43 599.493 600.000 600.556 600.829 601.353 601.635 603.681 17/12
44 613.434 613.953 614.522 614.802 615.338 615.626 617.72
45 627.376 627.907 628.488 628.775 629.323 629.618 631.7595
46 641.318 641.860 642.455 642.747 643.308 643.609 645.799
47 655.259 655.814 656.421 656.720 657.293 657.601 659.838
48 669.201 669.767 670.388 670.693 671.278 671.592 673.877
49 683.143 683.721 684.354 684.666 685.263 685.584 687.916
50 697.084 697.674 698.321 698.639 699.248 699.575 701.955 3/2
51 711.026 711.628 712.287 712.611 713.233 713.567 715.994
52 724.968 725.581 726.253 726.584 727.218 727.558 730.033
53 738.909 739.535 740.220 740.557 741.203 741.550 744.072
54 752.851 753.488 754.186 754.530 755.188 755.541 758.111
55 766.793 767.442 768.153 768.502 769.173 769.533 772.1505
56 780.735 781.395 782.119 782.475 783.158 783.524 786.19
57 794.676 795.349 796.085 796.448 797.143 797.516 800.229
58 808.618 809.302 810.052 810.421 811.128 811.507 814.268 8/5
59 822.560 823.256 824.018 824.393 825.113 825.499 828.307
60 836.501 837.209 837.985 838.366 839.098 839.490 842.346 13/8
61 850.443 851.163 851.951 852.339 853.083 853.482 856.385
62 864.385 865.116 865.917 866.312 867.068 867.473 870.424
63 878.326 879.070 879.884 880.285 881.053 881.465 884.463 5/3
64 892.268 893.023 893.850 894.257 895.038 895.456 898.502
65 906.210 906.977 907.817 908.230 909.023 909.448 912.5415
66 920.151 920.930 921.783 922.203 923.008 923.439 926.581
67 934.093 934.884 935.750 936.176 936.993 937.431 940.692
68 948.035 948.837 949.716 950.148 950.978 951.422 954.659
69 961.976 962.791 963.682 964.121 964.962 965.414 968.698 7/4
70 975.918 976.744 977.649 978.094 978.947 979.405 982.737
71 989.860 990.698 991.615 992.067 992.932 993.397 996.776 16/9
72 1003.802 1004.651 1005.582 1006.039 1006.917 1007.388 1010.815 25/14
73 1017.743 1018.605 1019.548 1020.012 1020.902 1021.380 1024.854 9/5
74 1031.685 1032.558 1033.514 1033.985 1034.887 1035.371 1038.893
75 1045.627 1046.512 1047.481 1047.958 1048.872 1049.363 1052.9325 11/6
76 1059.568 1060.465 1061.447 1061.931 1062.857 1063.354 1033.972
77 1073.510 1074.419 1075.414 1075.903 1076.842 1077.346 1081.011 28/15
78 1087.452 1088.372 1089.380 1089.876 1090.827 1091.337 1095.05 15/8
79 1101.393 1102.326 1103.346 1103.849 1104.812 1105.329 1109.089
80 1115.335 1116.279 1117.313 1117.822 1118.797 1119.320 1123.128
81 1129.277 1130.233 1131.279 1131.794 1132.782 1133.312 1137.167
82 1143.218 1144.186 1145.246 1145.767 1146.767 1147.303 1151.206
83 1157.160 1158.140 1159.212 1159.740 1160.752 1161.295 1165.245
84 1171.102 1172.093 1173.178 1173.713 1174.737 1175.286 1179.284
85 1185.043 1186.047 1187.145 1187.685 1188.722 1189.278 1193.3235
86 1198.985 1200.000 1201.111 1201.658 1202.707 1203.270 1207.363 2/1

See also