User:MisterShafXen/3edo: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
m Text replacement - "{{Infobox ET}}" to "{{Infobox ET|debug=1}}"
Tags: Mobile edit Mobile web edit
mNo edit summary
Tags: Visual edit Mobile edit Mobile web edit Advanced mobile edit
 
Line 2: Line 2:


{{ED intro}}
{{ED intro}}
== Theory ==
3edo is interesting as it is the first edo to have a triad, although it is [[augmented]]. This tuning notably tempers out [[128/125]], supporting augmented temperament.


== Notation ==
== Notation ==

Latest revision as of 21:34, 5 August 2025

← 2edo 3edo 4edo →
Prime factorization 3 (prime)
Step size 400 ¢ 
Fifth 2\3 (800 ¢)
(semiconvergent)
Semitones (A1:m2) 2:-1 (800 ¢ : -400 ¢)
Consistency limit 5
Distinct consistency limit 3

3 equal divisions of the octave (abbreviated 3edo or 3ed2), also called 3-tone equal temperament (3tet) or 3 equal temperament (3et) when viewed under a regular temperament perspective, is the tuning system that divides the octave into 3 equal parts of exactly 400 ¢ each. Each step represents a frequency ratio of 21/3, or the 3rd root of 2.

Theory

3edo is interesting as it is the first edo to have a triad, although it is augmented. This tuning notably tempers out 128/125, supporting augmented temperament.

Notation

A B C. All A, B, C.

Intervals

Steps Cents Approximate ratios Ups and downs notation
0 0 1/1, 14/13, 16/15, 17/16, 19/18, 20/19 D, F, B
1 400 4/3, 5/4, 6/5, 13/10, 13/11, 14/11, 16/13, 17/13, 17/14, 19/15, 19/16, 20/17 E, G
2 800 3/2, 5/3, 8/5, 11/7, 13/8, 17/10, 17/11, 19/12, 20/13 A, C
3 1200 2/1, 13/7, 15/8, 17/8, 19/9, 19/10 D

Harmonics

Approximation of prime harmonics in 3edo
Harmonic 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97
Error Absolute (¢) +0 +98 +14 -169 -151 -41 -105 +102 +172 +170 +55 +149 -29 -112 +134 -74 +141 +83 -79 -180 +172 +35 -50 -171 +80
Relative (%) +0.0 +24.5 +3.4 -42.2 -37.8 -10.1 -26.2 +25.6 +42.9 +42.6 +13.7 +37.2 -7.3 -27.9 +33.6 -18.4 +35.2 +20.8 -19.8 -44.9 +43.1 +8.9 -12.5 -42.7 +20.0
Steps
(reduced)
3
(0)
5
(2)
7
(1)
8
(2)
10
(1)
11
(2)
12
(0)
13
(1)
14
(2)
15
(0)
15
(0)
16
(1)
16
(1)
16
(1)
17
(2)
17
(2)
18
(0)
18
(0)
18
(0)
18
(0)
19
(1)
19
(1)
19
(1)
19
(1)
20
(2)
Approximation of prime harmonics in 3edo
Harmonic 101 103 107 109 113 127 131 137 139 149 151 157 163 167 173 179 181 191 193 197 199 211 223 227 229
Error Absolute (¢) +10 -24 -90 -122 -184 +14 -40 -118 -143 +137 +114 +46 -18 -60 -122 -181 -200 +107 +89 +54 +36 -65 -161 -192 +193
Relative (%) +2.5 -6.0 -22.4 -30.5 -46.1 +3.4 -10.0 -29.4 -35.7 +34.2 +28.5 +11.6 -4.6 -15.1 -30.4 -45.1 -50.0 +26.8 +22.3 +13.4 +9.0 -16.3 -40.3 -48.0 +48.2
Steps
(reduced)
20
(2)
20
(2)
20
(2)
20
(2)
20
(2)
21
(0)
21
(0)
21
(0)
21
(0)
22
(1)
22
(1)
22
(1)
22
(1)
22
(1)
22
(1)
22
(1)
22
(1)
23
(2)
23
(2)
23
(2)
23
(2)
23
(2)
23
(2)
23
(2)
24
(0)
Approximation of prime harmonics in 3edo
Harmonic
Error Absolute (¢)
Relative (%)
Steps
(reduced)