1600edo: Difference between revisions
Adopt template: Factorization; misc. cleanup |
ArrowHead294 (talk | contribs) mNo edit summary |
||
Line 16: | Line 16: | ||
== Regular temperament properties == | == Regular temperament properties == | ||
{ | {{comma basis begin}} | ||
|- | |- | ||
| 2.3.5 | | 2.3.5 | ||
| {{monzo| -53 10 16 }}, {{monzo| 26 -75 40 }} | | {{monzo| -53 10 16 }}, {{monzo| 26 -75 40 }} | ||
| {{mapping| 1600 2536 3715 }} | | {{mapping| 1600 2536 3715 }} | ||
| | | −0.0003 | ||
| 0.0228 | | 0.0228 | ||
| 3.04 | | 3.04 | ||
Line 36: | Line 28: | ||
| 4375/4374, {{monzo| 36 -5 0 -10 }}, {{monzo| -17 5 16 -10 }} | | 4375/4374, {{monzo| 36 -5 0 -10 }}, {{monzo| -17 5 16 -10 }} | ||
| {{mapping| 1600 2536 3715 4492 }} | | {{mapping| 1600 2536 3715 4492 }} | ||
| | | −0.0157 | ||
| 0.0332 | | 0.0332 | ||
| 4.43 | | 4.43 | ||
Line 43: | Line 35: | ||
| 3025/3024, 4375/4374, {{monzo| 24 -1 -5 0 1 }}, {{monzo| 15 1 7 -8 -3 }} | | 3025/3024, 4375/4374, {{monzo| 24 -1 -5 0 1 }}, {{monzo| 15 1 7 -8 -3 }} | ||
| {{mapping| 1600 2536 3715 4492 5535 }} | | {{mapping| 1600 2536 3715 4492 5535 }} | ||
| | | −0.0172 | ||
| 0.0329 | | 0.0329 | ||
| 4.39 | | 4.39 | ||
Line 50: | Line 42: | ||
| 3025/3024, 4096/4095, 4375/4374, 78125/78078, 823875/823543 | | 3025/3024, 4096/4095, 4375/4374, 78125/78078, 823875/823543 | ||
| {{mapping| 1600 2536 3715 4492 5535 5921 }} | | {{mapping| 1600 2536 3715 4492 5535 5921 }} | ||
| | | −0.0087 | ||
| 0.0356 | | 0.0356 | ||
| 4.75 | | 4.75 | ||
Line 57: | Line 49: | ||
| 2500/2499, 3025/3024, 4096/4095, 4375/4374, 14875/14872, 63888/63869 | | 2500/2499, 3025/3024, 4096/4095, 4375/4374, 14875/14872, 63888/63869 | ||
| {{mapping| 1600 2536 3715 4492 5535 5921 6540 }} | | {{mapping| 1600 2536 3715 4492 5535 5921 6540 }} | ||
| | | −0.0163 | ||
| 0.0331 | | 0.0331 | ||
| 4.41 | | 4.41 | ||
{{comma basis end}} | |||
=== Rank-2 temperaments === | === Rank-2 temperaments === | ||
{ | {{rank-2 begin}} | ||
|- | |- | ||
| 2 | | 2 | ||
Line 85: | Line 70: | ||
|- | |- | ||
| 32 | | 32 | ||
| 121\1600<br>(21/1600) | | 121\1600<br />(21/1600) | ||
| 90.75<br>(15.75) | | 90.75<br />(15.75) | ||
| 48828125/46294416<br>(?) | | 48828125/46294416<br />(?) | ||
| [[Windrose]] | | [[Windrose]] | ||
|- | |- | ||
| 32 | | 32 | ||
| 357\1600<br>(7\1600) | | 357\1600<br />(7\1600) | ||
| 267.75<br>(5.25) | | 267.75<br />(5.25) | ||
| 245/143<br>(?) | | 245/143<br />(?) | ||
| [[Germanium]] | | [[Germanium]] | ||
|- | |- | ||
| 80 | | 80 | ||
| 629\1600<br>(9\1600) | | 629\1600<br />(9\1600) | ||
| 471.75<br>(6.75) | | 471.75<br />(6.75) | ||
| 130/99<br>(?) | | 130/99<br />(?) | ||
| [[Tetraicosic]] | | [[Tetraicosic]] | ||
{{rank-2 end}} | |||
{{orf}} |
Revision as of 04:45, 16 November 2024
← 1599edo | 1600edo | 1601edo → |
Theory
1600edo is a very strong 37-limit system, being distinctly consistent in the 37-odd-limit with a smaller relative error than anything else with this property until 4501. It is also the first division past 311 with a lower 43-limit relative error.
In the 5-limit, it supports kwazy. In the 11-limit, it supports the rank-3 temperament thor. In higher limits, it tempers out 12376/12375 in the 17-limit and due to being consistent higher than 33-odd-limit it enables the essentially tempered flashmic chords.
Odd harmonics
Harmonic | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.000 | +0.045 | -0.064 | +0.174 | -0.068 | +0.222 | +0.045 | +0.237 | +0.226 | +0.173 | +0.214 |
Relative (%) | +0.0 | +6.0 | -8.5 | +23.2 | -9.1 | +29.6 | +5.9 | +31.6 | +30.1 | +23.0 | +28.6 | |
Steps (reduced) |
1600 (0) |
2536 (936) |
3715 (515) |
4492 (1292) |
5535 (735) |
5921 (1121) |
6540 (140) |
6797 (397) |
7238 (838) |
7773 (1373) |
7927 (1527) |
Subsets and supersets
Since 1600 factors into 26 × 52, 1600edo has subset edos 2, 4, 5, 8, 10, 16, 20, 25, 32, 40, 50, 64, 80, 100, 160, 200, 320, 400, and 800.
One step of it is the relative cent for 16. Its high divisibility, high consistency limit, and compatibility with the decimal system make it a candidate for interval size measure. One step of 1600edo is already used as a measure called śata in the context of 16edo Armodue theory.
Regular temperament properties
Template:Comma basis begin |- | 2.3.5 | [-53 10 16⟩, [26 -75 40⟩ | [⟨1600 2536 3715]] | −0.0003 | 0.0228 | 3.04 |- | 2.3.5.7 | 4375/4374, [36 -5 0 -10⟩, [-17 5 16 -10⟩ | [⟨1600 2536 3715 4492]] | −0.0157 | 0.0332 | 4.43 |- | 2.3.5.7.11 | 3025/3024, 4375/4374, [24 -1 -5 0 1⟩, [15 1 7 -8 -3⟩ | [⟨1600 2536 3715 4492 5535]] | −0.0172 | 0.0329 | 4.39 |- | 2.3.5.7.11.13 | 3025/3024, 4096/4095, 4375/4374, 78125/78078, 823875/823543 | [⟨1600 2536 3715 4492 5535 5921]] | −0.0087 | 0.0356 | 4.75 |- | 2.3.5.7.11.13.17 | 2500/2499, 3025/3024, 4096/4095, 4375/4374, 14875/14872, 63888/63869 | [⟨1600 2536 3715 4492 5535 5921 6540]] | −0.0163 | 0.0331 | 4.41 Template:Comma basis end
Rank-2 temperaments
Template:Rank-2 begin
|-
| 2
| 217\1600
| 162.75
| 1125/1024
| Kwazy
|-
| 32
| 23\1600
| 17.25
| ?
| Dam / dike / polder
|-
| 32
| 121\1600
(21/1600)
| 90.75
(15.75)
| 48828125/46294416
(?)
| Windrose
|-
| 32
| 357\1600
(7\1600)
| 267.75
(5.25)
| 245/143
(?)
| Germanium
|-
| 80
| 629\1600
(9\1600)
| 471.75
(6.75)
| 130/99
(?)
| Tetraicosic
Template:Rank-2 end
Template:Orf