15edf: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
CompactStar (talk | contribs)
No edit summary
-irrelevant shit
Line 166: Line 166:
|
|
|}
|}
==Scale tree==
If 4\7 (four degrees of 7EDO) is at one extreme and 3\5 (three degrees of 5EDO) is at the other, all other possible 5L 2s scales exist in a continuum between them. You can chop this continuum up by taking [[Mediant|"freshman sums"]] of the two edges - adding together the numerators, then adding together the denominators (i.e. adding them together as if you would be adding the complex numbers analogous real and imaginary parts). Thus, between 4\7 and 3\5 you have (4+3)\(7+5) = 7\12, seven degrees of 12EDO.
If we carry this freshman-summing out a little further, new, larger [[EDO]]s pop up in our continuum.
Generator range: 45.71429 cents (4\7/15 = 4\105) to 48 cents (3\5/15 = 1\25)
{| class="wikitable center-all"
! colspan="7" |Fifth
!Cents
!Comments
|-
|4\7|| || ||  || || || ||45.7143||
|-
| ||  || || || || ||27\47||45.95745||
|-
| ||  || || || || 23\40|| || 46.0000||
|-
|  || || || ||  || ||42\73|| 46.0274||
|-
| || || || ||19\33 || || ||46.{{Overline|06}}||
|-
| || || || || || ||53\92||46.0870||
|-
| || || || || ||34\59|| ||46.1017||
|-
| || || || || || ||49\85||46.11765||
|-
| || || ||15\26|| || || ||46.15385||
|-
| || || || || || ||56\97||46.1856||
|-
| || || || || ||41\71|| ||46.1972||
|-
| || || || || || ||67\116||46.2069||
|-
| || || || ||26\45|| || ||46.{{Overline|2}}||[[Flattone]] is in this region
|-
| || || || || || ||63\109||46.2385||
|-
| || || || || ||37\64|| ||46.2500||
|-
| || || || || || ||48\83||46.2651||
|-
| || ||11\19|| || || || ||46.3158||
|-
| || || || || || ||51\88||46.{{Overline|36}}||
|-
| || || || || ||40\69|| ||46.3768||
|-
| || || || || || ||69\119||46.38655||
|-
| || || || ||29\50|| || ||46.4000||
|-
| || || || || || ||76\131||46.4122||[[Golden meantone]] (696.2145¢)
|-
| || || || || ||47\81|| ||46.41975||
|-
| || || || || || ||65\112||46.4286||
|-
| || || ||18\31|| || || ||46.4516||[[Meantone]] is in this region
|-
| || || || || || ||61\105||46.4762||
|-
| || || || || ||43\74|| ||46.{{Overline|486}}||
|-
| || || || || || ||68\117||46.4957||
|-
| || || || ||25\43|| || ||46.5116||
|-
| || || || || || ||57\98||46.5306||
|-
| || || || || ||32\55|| ||46.{{Overline|54}}||
|-
| || || || || || ||39\67||46.5672||
|-
| ||7\12|| || || || || ||46.{{Overline|6}}||
|-
| || || || || || ||38\65||46.7692||
|-
| || || || || ||31\53|| ||46.79245||The fifth closest to a just [[3/2]] for EDOs less than 200
|-
| || || || || || ||55\94||46.8085||[[Garibaldi]] / [[Cassandra]]
|-
| || || || ||24\41|| || ||46.8293||
|-
| || || || || || ||65\111||46.{{Overline|843}}||
|-
| || || || || ||41\70|| ||46.8571||
|-
| || || || || || ||58\99||46.{{Overline|86}}||
|-
| || || ||17\29|| || || ||46.89655||
|-
| || || || || || ||61\104||46.9231||
|-
| || || || || ||44\75|| ||46.9{{Overline|3}}||
|-
| || || || || || ||71\121||46.94215||Golden neogothic (704.0956¢)
|-
| || || || ||27\46|| || ||46.9565||[[Neogothic]] is in this region
|-
| || || || || || ||64\109||46.9725||
|-
| || || || || ||37\63|| ||46.9841||
|-
| || || || || || ||47\80||47.0000||
|-
| || ||10\17|| || || || ||47.0588||The generator closest to a just [[21/16]] for EDOs less than 200
|-
| || || || || || ||43\73||47.1233||
|-
| || || || || ||33\56|| ||47.1429||
|-
| || || || || || ||56\95||47.1579||
|-
| || || || ||23\39|| || ||47.1795||
|-
| || || || || || ||59\100||47.2000||
|-
| || || || || ||36\61|| ||47.2131||
|-
| || || || || || ||49\83||47.2289||
|-
| || || ||13\22|| || || ||47.{{Overline|27}}||[[Archy]] is in this region
|-
| || || || || || ||42\71||47.3239||
|-
| || || || || ||29\49|| ||47.3469||
|-
| || || || || || ||45\76||47.3864||
|-
| || || || ||16\27|| || ||47.{{Overline|407}}||
|-
| || || || || || ||35\59||47.4576||
|-
| || || || || ||19\32|| ||47.5000||
|-
| || || || || || ||22\37||47.{{Overline|567}}||
|-
|3\5|| || || || || || ||48.0000||
|}Tunings above 7\12 on this chart are called "negative tunings" (as they lessen the size of the fifth) and include meantone systems such as 1/3-comma (close to 11\19) and 1/4-comma (close to 18\31). As these tunings approach 4\7, the majors become flatter and the minors become sharper.
Tunings below 7\12 on this chart are called "positive tunings" and they include Pythagorean tuning itself (well approximated by 31\53) as well as superpyth tunings such as 10\17 and 13\22. As these tunings approach 3\5, the majors become sharper and the minors become flatter. Around 13\22 through 16\27, the thirds fall closer to 7-limit than 5-limit intervals: 7:6 and 9:7 as opposed to 6:5 and 5:4.
[[Category:Edf]]
[[Category:Edonoi]]

Revision as of 13:21, 7 May 2024

← 14edf 15edf 16edf →
Prime factorization 3 × 5
Step size 46.797 ¢ 
Octave 26\15edf (1216.72 ¢)
Twelfth 41\15edf (1918.68 ¢)
Consistency limit 3
Distinct consistency limit 3

15EDF is the equal division of the just perfect fifth into 15 parts of 46.797 cents each, corresponding to 25.6427 edo (similar to every third step of 77edo). The 3edf~5edo correspondence has completely collapsed by this point, with this EDF being closer to 26edo than 25edo.

Lookalikes: 26edo, 41edt

Intervals

degree cents value corresponding
JI intervals
comments
0 exact 1/1
1 46.797
2 93.594 19/18
3 140.391 13/12
4 187.188 10/9
5 233.985 8/7
6 280.782 20/17
7 327.579
8 374.376
9 421.173 51/40
10 467.97 21/16
11 514.767 27/20
12 561.564 18/13
13 608.361 27/19
14 655.158
15 701.955 exact 3/2 just perfect fifth
16 748.752
17 795.549 19/12
18 842.346 13/8
19 889.143 5/3
20 935.94 12/7
21 982.737 30/17
22 1029.534
23 1076.331
24 1123.128 153/80
25 1168.925 63/32
26 1216.722 81/40
27 1263.519 27/13
28 1310.316 81/38
29 1357.113
30 1403.91 exact 9/4