227edo: Difference between revisions
→Music: +music |
Cleanup; correction comma bases |
||
Line 1: | Line 1: | ||
{{Infobox ET}} | {{Infobox ET}} | ||
{{EDO intro|227}} | {{EDO intro|227}} | ||
== Theory == | == Theory == | ||
The equal temperament tempers out 15625/15552 ([[15625/15552|kleisma]]) and {{monzo| 61 -37 -1 }} in the 5-limit; [[5120/5103]], [[65625/65536]], and 117649/116640 in the 7-limit, so that it [[support]]s [[countercata]]. In the 11-limit, it tempers out [[385/384]], 2200/2187, 3388/3375, and 12005/11979, so that it provides the [[optimal patent val]] for 11-limit countercata. In the 13-limit, it tempers out [[325/324]], [[352/351]], [[625/624]], [[676/675]], and [[847/845]], and again supplies a good tuning for 13-limit countercata, although [[140edo]] tunes it better in this case. | The equal temperament [[tempering out|tempers out]] 15625/15552 ([[15625/15552|kleisma]]) and {{monzo| 61 -37 -1 }} in the 5-limit; [[5120/5103]], [[65625/65536]], and 117649/116640 in the 7-limit, so that it [[support]]s [[countercata]]. In the 11-limit, it tempers out [[385/384]], [[2200/2187]], [[3388/3375]], and 12005/11979, so that it provides the [[optimal patent val]] for 11-limit countercata. In the 13-limit, it tempers out [[325/324]], [[352/351]], [[625/624]], [[676/675]], and [[847/845]], and again supplies a good tuning for 13-limit countercata, although [[140edo]] tunes it better in this case. | ||
227edo is accurate for the 13th harmonic, as the denominator of a convergent to log<sub>2</sub>13, after [[10edo|10]] and before [[5231edo|5231]]. | 227edo is accurate for the [[13/1|13th harmonic]], as the denominator of a convergent to log<sub>2</sub>13, after [[10edo|10]] and before [[5231edo|5231]]. | ||
=== Prime harmonics === | === Prime harmonics === | ||
Line 12: | Line 13: | ||
227edo is the 49th [[prime edo]]. | 227edo is the 49th [[prime edo]]. | ||
==Regular temperament properties== | == Regular temperament properties == | ||
{| class="wikitable center-4 center-5 center-6" | {| class="wikitable center-4 center-5 center-6" | ||
! rowspan="2" |[[Subgroup]] | ! rowspan="2" | [[Subgroup]] | ||
! rowspan="2" |[[Comma list|Comma List]] | ! rowspan="2" | [[Comma list|Comma List]] | ||
! rowspan="2" |[[Mapping]] | ! rowspan="2" | [[Mapping]] | ||
! rowspan="2" |Optimal<br>8ve Stretch (¢) | ! rowspan="2" | Optimal<br>8ve Stretch (¢) | ||
! colspan="2" |Tuning Error | ! colspan="2" | Tuning Error | ||
|- | |- | ||
![[TE error|Absolute]] (¢) | ! [[TE error|Absolute]] (¢) | ||
![[TE simple badness|Relative]] (%) | ! [[TE simple badness|Relative]] (%) | ||
|- | |- | ||
|2.3 | | 2.3 | ||
|{{monzo|360 -227}} | | {{monzo| 360 -227 }} | ||
|{{ | | {{mapping| 227 360 }} | ||
| -0.3561 | | -0.3561 | ||
| 0.3560 | | 0.3560 | ||
| 6.73 | | 6.73 | ||
|- | |- | ||
|2.3.5 | | 2.3.5 | ||
|15625/15552, {{monzo|61 -37 -1}} | | 15625/15552, {{monzo| 61 -37 -1 }} | ||
|{{ | | {{mapping| 227 360 527 }} | ||
| -0.1785 | | -0.1785 | ||
| 0.3842 | | 0.3842 | ||
| 7.27 | | 7.27 | ||
|- | |- | ||
|2.3.5.7 | | 2.3.5.7 | ||
|5120/5103, 15625/15552, | | 5120/5103, 15625/15552, 117649/116640 | ||
|{{ | | {{mapping| 227 360 527 637 }} | ||
| -0.0071 | | -0.0071 | ||
| 0.4461 | | 0.4461 | ||
| 8.44 | | 8.44 | ||
|- | |- | ||
|2.3.5.7.11 | | 2.3.5.7.11 | ||
|385/384, 2200/2187, 3388/3375, | | 385/384, 2200/2187, 3388/3375, 12005/11979 | ||
|{{ | | {{mapping| 227 360 527 637 785 }} | ||
| +0.0832 | | +0.0832 | ||
| 0.4380 | | 0.4380 | ||
| 8.29 | | 8.29 | ||
|- | |- | ||
|2.3.5.7.11.13 | | 2.3.5.7.11.13 | ||
|325/324, 352/351, 385/384, 625/624, | | 325/324, 352/351, 385/384, 625/624, 12005/11979 | ||
|{{ | | {{mapping| 227 360 527 637 785 840 }} | ||
| +0.0693 | | +0.0693 | ||
| 0.4010 | | 0.4010 | ||
| 7.59 | | 7.59 | ||
|- | |- | ||
|2.3.5.7.11.13.17 | | 2.3.5.7.11.13.17 | ||
|352/351, 595/594, | | 325/324, 352/351, 385/384, 595/594, 625/624, 3185/3179 | ||
|{{ | | {{mapping| 227 360 527 637 785 840 928 }} | ||
| +0.0324 | | +0.0324 | ||
| 0.3821 | | 0.3821 | ||
| 7.23 | | 7.23 | ||
|} | |} | ||
=== Rank-2 temperaments === | === Rank-2 temperaments === | ||
{| class="wikitable center-all left-5" | {| class="wikitable center-all left-5" | ||
|+Table of rank-2 temperaments by generator | |+Table of rank-2 temperaments by generator | ||
! Periods<br>per 8ve | ! Periods<br>per 8ve | ||
! Generator | ! Generator* | ||
! Cents | ! Cents* | ||
! Associated<br> | ! Associated<br>Ratio* | ||
! Temperaments | ! Temperaments | ||
|- | |- | ||
|1 | | 1 | ||
|25\227 | | 25\227 | ||
|132.16 | | 132.16 | ||
| | | 121/112 | ||
|[[ | | [[Kastro]] | ||
|- | |- | ||
|1 | | 1 | ||
|60\227 | | 60\227 | ||
|317.18 | | 317.18 | ||
|6/5 | | 6/5 | ||
|[[ | | [[Countercata]] | ||
|- | |- | ||
|1 | | 1 | ||
|94\227 | | 94\227 | ||
|496.92 | | 496.92 | ||
|4/3 | | 4/3 | ||
|[[Undecental]] | | [[Undecental]] | ||
|} | |} | ||
<nowiki>*</nowiki> [[Normal lists|octave-reduced form]], reduced to the first half-octave, and [[Normal lists|minimal form]] in parentheses if it is distinct | |||
== Music == | == Music == |
Revision as of 06:04, 2 April 2024
← 226edo | 227edo | 228edo → |
Theory
The equal temperament tempers out 15625/15552 (kleisma) and [61 -37 -1⟩ in the 5-limit; 5120/5103, 65625/65536, and 117649/116640 in the 7-limit, so that it supports countercata. In the 11-limit, it tempers out 385/384, 2200/2187, 3388/3375, and 12005/11979, so that it provides the optimal patent val for 11-limit countercata. In the 13-limit, it tempers out 325/324, 352/351, 625/624, 676/675, and 847/845, and again supplies a good tuning for 13-limit countercata, although 140edo tunes it better in this case.
227edo is accurate for the 13th harmonic, as the denominator of a convergent to log213, after 10 and before 5231.
Prime harmonics
Harmonic | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.00 | +1.13 | -0.41 | -1.43 | -1.54 | +0.00 | +0.77 | -1.48 | +0.80 | +1.26 | +2.10 |
Relative (%) | +0.0 | +21.4 | -7.8 | -27.0 | -29.1 | +0.0 | +14.6 | -28.0 | +15.1 | +23.8 | +39.7 | |
Steps (reduced) |
227 (0) |
360 (133) |
527 (73) |
637 (183) |
785 (104) |
840 (159) |
928 (20) |
964 (56) |
1027 (119) |
1103 (195) |
1125 (217) |
Subsets and supersets
227edo is the 49th prime edo.
Regular temperament properties
Subgroup | Comma List | Mapping | Optimal 8ve Stretch (¢) |
Tuning Error | |
---|---|---|---|---|---|
Absolute (¢) | Relative (%) | ||||
2.3 | [360 -227⟩ | [⟨227 360]] | -0.3561 | 0.3560 | 6.73 |
2.3.5 | 15625/15552, [61 -37 -1⟩ | [⟨227 360 527]] | -0.1785 | 0.3842 | 7.27 |
2.3.5.7 | 5120/5103, 15625/15552, 117649/116640 | [⟨227 360 527 637]] | -0.0071 | 0.4461 | 8.44 |
2.3.5.7.11 | 385/384, 2200/2187, 3388/3375, 12005/11979 | [⟨227 360 527 637 785]] | +0.0832 | 0.4380 | 8.29 |
2.3.5.7.11.13 | 325/324, 352/351, 385/384, 625/624, 12005/11979 | [⟨227 360 527 637 785 840]] | +0.0693 | 0.4010 | 7.59 |
2.3.5.7.11.13.17 | 325/324, 352/351, 385/384, 595/594, 625/624, 3185/3179 | [⟨227 360 527 637 785 840 928]] | +0.0324 | 0.3821 | 7.23 |
Rank-2 temperaments
Periods per 8ve |
Generator* | Cents* | Associated Ratio* |
Temperaments |
---|---|---|---|---|
1 | 25\227 | 132.16 | 121/112 | Kastro |
1 | 60\227 | 317.18 | 6/5 | Countercata |
1 | 94\227 | 496.92 | 4/3 | Undecental |
* octave-reduced form, reduced to the first half-octave, and minimal form in parentheses if it is distinct