1600edo: Difference between revisions
mNo edit summary |
Adopt template: EDO intro; cleanup; clarify the title row of the rank-2 temp table |
||
Line 1: | Line 1: | ||
{{Infobox ET}} | {{Infobox ET}} | ||
{{EDO intro|1600}} | |||
== Theory == | == Theory == | ||
Line 6: | Line 6: | ||
In the 5-limit, it supports [[kwazy]]. In the 11-limit, it supports the rank-3 temperament [[thor]]. In higher limits, it tempers out [[12376/12375]] in the 17-limit and due to being consistent higher than 33-odd-limit it enables the essentially tempered [[flashmic chords]]. | In the 5-limit, it supports [[kwazy]]. In the 11-limit, it supports the rank-3 temperament [[thor]]. In higher limits, it tempers out [[12376/12375]] in the 17-limit and due to being consistent higher than 33-odd-limit it enables the essentially tempered [[flashmic chords]]. | ||
===Odd harmonics=== | |||
=== Odd harmonics === | |||
{{Harmonics in equal|1600}} | {{Harmonics in equal|1600}} | ||
===Subsets and supersets=== | |||
=== Subsets and supersets === | |||
1600's divisors are {{EDOs|1, 2, 4, 5, 8, 10, 16, 20, 25, 32, 40, 50, 64, 80, 100, 160, 200, 320, 400, 800}}. | 1600's divisors are {{EDOs|1, 2, 4, 5, 8, 10, 16, 20, 25, 32, 40, 50, 64, 80, 100, 160, 200, 320, 400, 800}}. | ||
One step of it is the [[relative cent]] for [[16edo|16]]. | One step of it is the [[relative cent]] for [[16edo|16]]. Its high divisibility, high consistency limit, and compatibility with the decimal system make it a candidate for interval size measure. One step of 1600edo is already used as a measure called ''śata'' in the context of 16edo [[Armodue theory]]. | ||
== Regular temperament properties == | == Regular temperament properties == | ||
{| class="wikitable center-4 center-5 center-6" | {| class="wikitable center-4 center-5 center-6" | ||
! rowspan="2" | [[Subgroup]] | ! rowspan="2" | [[Subgroup]] | ||
! rowspan="2" | [[Comma list]] | ! rowspan="2" | [[Comma list|Comma List]] | ||
! rowspan="2" | [[Mapping]] | ! rowspan="2" | [[Mapping]] | ||
! rowspan="2" | Optimal<br>8ve Stretch (¢) | ! rowspan="2" | Optimal<br>8ve Stretch (¢) | ||
Line 25: | Line 28: | ||
| 2.3.5 | | 2.3.5 | ||
| {{Monzo| -53 10 16 }}, {{monzo| 26 -75 40 }} | | {{Monzo| -53 10 16 }}, {{monzo| 26 -75 40 }} | ||
| | | {{mapping| 1600 2536 3715 }} | ||
| -0.0003 | | -0.0003 | ||
| 0.0228 | | 0.0228 | ||
Line 32: | Line 35: | ||
| 2.3.5.7 | | 2.3.5.7 | ||
| 4375/4374, {{monzo| 36 -5 0 -10 }}, {{monzo| -17 5 16 -10 }} | | 4375/4374, {{monzo| 36 -5 0 -10 }}, {{monzo| -17 5 16 -10 }} | ||
| | | {{mapping| 1600 2536 3715 4492 }} | ||
| -0.0157 | | -0.0157 | ||
| 0.0332 | | 0.0332 | ||
Line 39: | Line 42: | ||
| 2.3.5.7.11 | | 2.3.5.7.11 | ||
| 3025/3024, 4375/4374, {{monzo| 24 -1 -5 0 1 }}, {{monzo| 15 1 7 -8 -3 }} | | 3025/3024, 4375/4374, {{monzo| 24 -1 -5 0 1 }}, {{monzo| 15 1 7 -8 -3 }} | ||
| | | {{mapping| 1600 2536 3715 4492 5535 }} | ||
| -0.0172 | | -0.0172 | ||
| 0.0329 | | 0.0329 | ||
Line 46: | Line 49: | ||
| 2.3.5.7.11.13 | | 2.3.5.7.11.13 | ||
| 3025/3024, 4096/4095, 4375/4374, 78125/78078, 823875/823543 | | 3025/3024, 4096/4095, 4375/4374, 78125/78078, 823875/823543 | ||
| | | {{mapping| 1600 2536 3715 4492 5535 5921 }} | ||
| -0.0087 | | -0.0087 | ||
| 0.0356 | | 0.0356 | ||
Line 53: | Line 56: | ||
| 2.3.5.7.11.13.17 | | 2.3.5.7.11.13.17 | ||
| 2500/2499, 3025/3024, 4096/4095, 4375/4374, 14875/14872, 63888/63869 | | 2500/2499, 3025/3024, 4096/4095, 4375/4374, 14875/14872, 63888/63869 | ||
| | | {{mapping| 1600 2536 3715 4492 5535 5921 6540 }} | ||
| -0.0163 | | -0.0163 | ||
| 0.0331 | | 0.0331 | ||
Line 62: | Line 65: | ||
{| class="wikitable center-all left-5" | {| class="wikitable center-all left-5" | ||
! Periods<br>per 8ve | ! Periods<br>per 8ve | ||
! Generator | ! Generator* | ||
! Cents | ! Cents* | ||
! Associated<br>Ratio | ! Associated<br>Ratio | ||
! Temperaments | ! Temperaments | ||
Line 97: | Line 100: | ||
| [[Tetraicosic]] | | [[Tetraicosic]] | ||
|} | |} | ||
<nowiki>*</nowiki> [[Normal lists|octave-reduced form]], reduced to the first half-octave, and [[Normal lists|minimal form]] in parentheses if it is distinct |
Revision as of 14:54, 15 October 2023
← 1599edo | 1600edo | 1601edo → |
Theory
1600edo is a very strong 37-limit system, being distinctly consistent in the 37-limit with a smaller relative error than anything else with this property until 4501. It is also the first division past 311 with a lower 43-limit relative error.
In the 5-limit, it supports kwazy. In the 11-limit, it supports the rank-3 temperament thor. In higher limits, it tempers out 12376/12375 in the 17-limit and due to being consistent higher than 33-odd-limit it enables the essentially tempered flashmic chords.
Odd harmonics
Harmonic | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.000 | +0.045 | -0.064 | +0.174 | -0.068 | +0.222 | +0.045 | +0.237 | +0.226 | +0.173 | +0.214 |
Relative (%) | +0.0 | +6.0 | -8.5 | +23.2 | -9.1 | +29.6 | +5.9 | +31.6 | +30.1 | +23.0 | +28.6 | |
Steps (reduced) |
1600 (0) |
2536 (936) |
3715 (515) |
4492 (1292) |
5535 (735) |
5921 (1121) |
6540 (140) |
6797 (397) |
7238 (838) |
7773 (1373) |
7927 (1527) |
Subsets and supersets
1600's divisors are 1, 2, 4, 5, 8, 10, 16, 20, 25, 32, 40, 50, 64, 80, 100, 160, 200, 320, 400, 800.
One step of it is the relative cent for 16. Its high divisibility, high consistency limit, and compatibility with the decimal system make it a candidate for interval size measure. One step of 1600edo is already used as a measure called śata in the context of 16edo Armodue theory.
Regular temperament properties
Subgroup | Comma List | Mapping | Optimal 8ve Stretch (¢) |
Tuning Error | |
---|---|---|---|---|---|
Absolute (¢) | Relative (%) | ||||
2.3.5 | [-53 10 16⟩, [26 -75 40⟩ | [⟨1600 2536 3715]] | -0.0003 | 0.0228 | 3.04 |
2.3.5.7 | 4375/4374, [36 -5 0 -10⟩, [-17 5 16 -10⟩ | [⟨1600 2536 3715 4492]] | -0.0157 | 0.0332 | 4.43 |
2.3.5.7.11 | 3025/3024, 4375/4374, [24 -1 -5 0 1⟩, [15 1 7 -8 -3⟩ | [⟨1600 2536 3715 4492 5535]] | -0.0172 | 0.0329 | 4.39 |
2.3.5.7.11.13 | 3025/3024, 4096/4095, 4375/4374, 78125/78078, 823875/823543 | [⟨1600 2536 3715 4492 5535 5921]] | -0.0087 | 0.0356 | 4.75 |
2.3.5.7.11.13.17 | 2500/2499, 3025/3024, 4096/4095, 4375/4374, 14875/14872, 63888/63869 | [⟨1600 2536 3715 4492 5535 5921 6540]] | -0.0163 | 0.0331 | 4.41 |
Rank-2 temperaments
Periods per 8ve |
Generator* | Cents* | Associated Ratio |
Temperaments |
---|---|---|---|---|
2 | 217\1600 | 162.75 | 1125/1024 | Kwazy |
32 | 23\1600 | 17.25 | ? | Dam / dike / polder |
32 | 121\1600 (21/1600) |
90.75 (15.75) |
48828125/46294416 (?) |
Windrose |
32 | 357\1600 (7\1600) |
267.75 (5.25) |
245/143 (?) |
Germanium |
80 | 629\1600 (9\1600) |
471.75 (6.75) |
130/99 (?) |
Tetraicosic |
* octave-reduced form, reduced to the first half-octave, and minimal form in parentheses if it is distinct