190edo: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
m Cleanup
Eliora (talk | contribs)
Line 58: Line 58:
{| class="wikitable center-all left-5"
{| class="wikitable center-all left-5"
|+Table of rank-2 temperaments by generator
|+Table of rank-2 temperaments by generator
! Periods<br>per Octave
! Periods<br>per 8ve
! Generator<br>(Reduced)
! Generator<br>(Reduced)
! Cents<br>(Reduced)
! Cents<br>(Reduced)

Revision as of 21:14, 13 September 2023

← 189edo 190edo 191edo →
Prime factorization 2 × 5 × 19
Step size 6.31579 ¢ 
Fifth 111\190 (701.053 ¢)
Semitones (A1:m2) 17:15 (107.4 ¢ : 94.74 ¢)
Consistency limit 15
Distinct consistency limit 15

Template:EDO intro

Theory

190edo is interesting because of the utility of its approximations; it tempers out 1029/1024, 4375/4374, 385/384, 441/440, 3025/3024 and 9801/9800. It provides the optimal patent val for both the 7- and 11-limit versions of unidec, the 72 & 118 temperament, which tempers out 1029/1024, 4375/4374, and in the 11-limit, 385/384 and 441/440. It also provides the optimal patent val for the rank-3 11-limit temperament portent, which tempers out 385/384 and 441/440, and gamelan, the rank-3 7-limit temperament which tempers out 1029/1024, as well as slendric, the 2.3.7 subgroup temperament featured in the #Music section. In the 13-limit, 190et tempers out 847/845, 625/624, 729/728, 1575/1573 and 1001/1000, and provides the optimal patent val for the ekadash temperament and the rank-3 portentous temperament.

Prime harmonics

Approximation of odd harmonics in 190edo
Harmonic 3 5 7 9 11 13 15 17 19 21 23
Error Absolute (¢) -0.90 -1.05 -2.51 -1.80 -1.84 -0.53 -1.95 +2.41 -0.67 +2.90 -3.01
Relative (%) -14.3 -16.6 -39.7 -28.6 -29.2 -8.4 -30.9 +38.2 -10.6 +46.0 -47.7
Steps
(reduced)
301
(111)
441
(61)
533
(153)
602
(32)
657
(87)
703
(133)
742
(172)
777
(17)
807
(47)
835
(75)
859
(99)

Regular temperament properties

Subgroup Comma List Mapping Optimal
8ve stretch (¢)
Tuning error
Absolute (¢) Relative (%)
2.3 [-301 190 [190 301]] +0.285 0.285 4.51
2.3.5 2109375/2097152, [-7 22 -12 [190 301 441]] +0.341 0.246 3.89
2.3.5.7 1029/1024, 4375/4374, 235298/234375 [190 301 441 533]] +0.479 0.321 5.07
2.3.5.7.11 385/384, 441/440, 4375/4374, 234375/234256 [190 301 441 533 657]] +0.490 0.288 4.55
2.3.5.7.11.13 385/384, 441/440, 625/624, 729/728, 847/845 [190 301 441 533 657 703]] +0.432 0.293 4.63

Rank-2 temperaments

Table of rank-2 temperaments by generator
Periods
per 8ve
Generator
(Reduced)
Cents
(Reduced)
Associated
Ratio
Temperaments
1 37\190 233.68 8/7 Slendric
1 43\190 271.58 75/64 Orson / sabric
1 49\190 309.47 448/375 Triwell
1 71\190 448.42 35/27 Semidimfourth
1 83\190 524.21 65/48 Widefourth
2 28\190 176.84 195/176 Quatracot
2 29\190 183.16 10/9 Unidec / ekadash
2 59\190
(36\190)
372.63
(227.37)
26/21
(297/260)
Essence
2 71\190
(24\190)
448.42
(151.58)
35/27
(12/11)
Neusec
5 79\190
(3\190)
498.95
(18.95)
4/3
(81/80)
Pental
10 50\190
(7\190)
315.79
(45.79)
6/5
(40/39)
Deca
10 79\190
(3\190)
498.95
(18.95)
4/3
(81/80)
Decal
19 79\190
(1\190)
498.95
(6.32)
4/3
(225/224)
Enneadecal
38 79\190
(1\190)
265.26
(6.32)
4/3
(225/224)
Hemienneadecal
38 42\190
(2\190)
265.26
(12.63)
500/429
(144/143)
Semihemienneadecal

Scales

Music

Chris Vaisvil