1106edo: Difference between revisions
Jump to navigation
Jump to search
m Formatting |
|||
Line 1: | Line 1: | ||
{{Infobox ET}} | {{Infobox ET}} | ||
{{EDO intro|1106}} | {{EDO intro|1106}} | ||
== Theory == | == Theory == | ||
1106edo is a [[The Riemann zeta function and tuning #Zeta EDO lists|zeta peak edo]]. It is strong as a 7-limit system; the only edos lower than it with a lower 7-limit [[Tenney-Euclidean temperament measures #TE simple badness|relative error]] being {{EDOs| 171, 270, 342, 441 and 612 }}. It is even stronger in the 11-limit; the only ones beating it out now being {{EDOs| 270, 342 and 612 }}. It is less strong in the 13 and 17 | 1106edo is a [[The Riemann zeta function and tuning #Zeta EDO lists|zeta peak edo]]. It is strong as a 7-limit system; the only edos lower than it with a lower 7-limit [[Tenney-Euclidean temperament measures #TE simple badness|relative error]] being {{EDOs| 171, 270, 342, 441 and 612 }}. It is even stronger in the 11-limit; the only ones beating it out now being {{EDOs| 270, 342 and 612 }}. It is less strong in the 13- and 17-limit, but even so is distinctly [[consistent]] through the [[17-odd-limit]]. | ||
It notably supports [[supermajor]], [[brahmagupta]], and [[orga]] in the 7-limit, and notably [[semisupermajor]] in the 11-limit. In higher limits, it supports the 79th-octave temperament [[gold]]. | It notably supports [[supermajor]], [[brahmagupta]], and [[orga]] in the 7-limit, and notably [[semisupermajor]] in the 11-limit. In the higher limits, it supports the 79th-octave temperament [[gold]]. | ||
=== Prime harmonics === | === Prime harmonics === | ||
{{Harmonics in equal|1106}} | {{Harmonics in equal|1106}} | ||
=== | === Subsets and supersets === | ||
Since 1106 factors into 2 × 7 × 79, it has subset edos {{EDOs| 2, 7, 14, 79, 158, and 553 }}. | Since 1106 factors into 2 × 7 × 79, it has subset edos {{EDOs| 2, 7, 14, 79, 158, and 553 }}. | ||
== Regular temperament properties == | == Regular temperament properties == | ||
{| class="wikitable center-4 center-5 center-6" | {| class="wikitable center-4 center-5 center-6" | ||
! rowspan="2" |[[Subgroup]] | ! rowspan="2" | [[Subgroup]] | ||
! rowspan="2" |[[Comma list|Comma List]] | ! rowspan="2" | [[Comma list|Comma List]] | ||
! rowspan="2" |[[Mapping]] | ! rowspan="2" | [[Mapping]] | ||
! rowspan="2" |Optimal | ! rowspan="2" | Optimal<br>8ve Stretch (¢) | ||
8ve Stretch (¢) | ! colspan="2" | Tuning Error | ||
! colspan="2" |Tuning Error | |||
|- | |- | ||
![[TE error|Absolute]] (¢) | ! [[TE error|Absolute]] (¢) | ||
![[TE simple badness|Relative]] (%) | ! [[TE simple badness|Relative]] (%) | ||
|- | |- | ||
|2.3 | | 2.3 | ||
|{{monzo|1753 -1106}} | | {{monzo| 1753 -1106 }} | ||
|{{val|1106 1753}} | | {{val| 1106 1753 }} | ||
| -0.010 | | -0.010 | ||
|0.010 | | 0.010 | ||
|0.99 | | 0.99 | ||
|- | |- | ||
|2.3.5 | | 2.3.5 | ||
|{{monzo|-53 10 16}}, {{monzo|40 -56 21}} | | {{monzo| -53 10 16 }}, {{monzo| 40 -56 21 }} | ||
|{{val|1106 1753 2568}} | | {{val| 1106 1753 2568 }} | ||
| +0.001 | | +0.001 | ||
|0.019 | | 0.019 | ||
|1.73 | | 1.73 | ||
|- | |- | ||
|2.3.5.7 | | 2.3.5.7 | ||
|4375/4374, 52734375/52706752, {{monzo|46 -14 -3 -6}} | | 4375/4374, 52734375/52706752, {{monzo| 46 -14 -3 -6 }} | ||
|{{val|1106 1753 2568 3105}} | | {{val| 1106 1753 2568 3105 }} | ||
| | | -0.006 | ||
|0.020 | | 0.020 | ||
|1.83 | | 1.83 | ||
|- | |- | ||
|2.3.5.7.11 | | 2.3.5.7.11 | ||
|3025/3024, 4375/4374, 5767168/5764801, 35156250/35153041 | | 3025/3024, 4375/4374, 5767168/5764801, 35156250/35153041 | ||
|{{val|1106 1753 2568 3105 3826}} | | {{val| 1106 1753 2568 3105 3826 }} | ||
| +0.004 | | +0.004 | ||
|0.026 | | 0.026 | ||
|2.38 | | 2.38 | ||
|- | |- | ||
|2.3.5.7.11.13 | |2.3.5.7.11.13 | ||
|3025/3024, 4096/4095, 4375/4374, 456533/456300, 928125/927472 | | 3025/3024, 4096/4095, 4375/4374, 456533/456300, 928125/927472 | ||
|{{val|1106 1753 2568 3105 3826 4093}} | | {{val| 1106 1753 2568 3105 3826 4093 }} | ||
| | | -0.012 | ||
|0.043 | | 0.043 | ||
|3.94 | | 3.94 | ||
|- | |- | ||
|2.3.5.7.11.13.17 | | 2.3.5.7.11.13.17 | ||
|2500/2499, 3025/3024, 4096/4095, 8624/8619, 9801/9800, 14875/14572 | | 2500/2499, 3025/3024, 4096/4095, 8624/8619, 9801/9800, 14875/14572 | ||
|{{val|1106 1753 2568 3105 3826 4093 4521}} | | {{val| 1106 1753 2568 3105 3826 4093 4521 }} | ||
| | | -0.021 | ||
|0.045 | | 0.045 | ||
|4.11 | | 4.11 | ||
|} | |} | ||
=== Rank-2 temperaments === | === Rank-2 temperaments === | ||
{| class="wikitable center-all left-5" | {| class="wikitable center-all left-5" |
Revision as of 01:29, 6 July 2023
← 1105edo | 1106edo | 1107edo → |
Theory
1106edo is a zeta peak edo. It is strong as a 7-limit system; the only edos lower than it with a lower 7-limit relative error being 171, 270, 342, 441 and 612. It is even stronger in the 11-limit; the only ones beating it out now being 270, 342 and 612. It is less strong in the 13- and 17-limit, but even so is distinctly consistent through the 17-odd-limit.
It notably supports supermajor, brahmagupta, and orga in the 7-limit, and notably semisupermajor in the 11-limit. In the higher limits, it supports the 79th-octave temperament gold.
Prime harmonics
Harmonic | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.000 | +0.034 | -0.057 | +0.071 | -0.143 | +0.340 | +0.289 | -0.225 | -0.065 | +0.079 | -0.370 |
Relative (%) | +0.0 | +3.1 | -5.2 | +6.5 | -13.1 | +31.4 | +26.6 | -20.8 | -6.0 | +7.3 | -34.1 | |
Steps (reduced) |
1106 (0) |
1753 (647) |
2568 (356) |
3105 (893) |
3826 (508) |
4093 (775) |
4521 (97) |
4698 (274) |
5003 (579) |
5373 (949) |
5479 (1055) |
Subsets and supersets
Since 1106 factors into 2 × 7 × 79, it has subset edos 2, 7, 14, 79, 158, and 553.
Regular temperament properties
Subgroup | Comma List | Mapping | Optimal 8ve Stretch (¢) |
Tuning Error | |
---|---|---|---|---|---|
Absolute (¢) | Relative (%) | ||||
2.3 | [1753 -1106⟩ | ⟨1106 1753] | -0.010 | 0.010 | 0.99 |
2.3.5 | [-53 10 16⟩, [40 -56 21⟩ | ⟨1106 1753 2568] | +0.001 | 0.019 | 1.73 |
2.3.5.7 | 4375/4374, 52734375/52706752, [46 -14 -3 -6⟩ | ⟨1106 1753 2568 3105] | -0.006 | 0.020 | 1.83 |
2.3.5.7.11 | 3025/3024, 4375/4374, 5767168/5764801, 35156250/35153041 | ⟨1106 1753 2568 3105 3826] | +0.004 | 0.026 | 2.38 |
2.3.5.7.11.13 | 3025/3024, 4096/4095, 4375/4374, 456533/456300, 928125/927472 | ⟨1106 1753 2568 3105 3826 4093] | -0.012 | 0.043 | 3.94 |
2.3.5.7.11.13.17 | 2500/2499, 3025/3024, 4096/4095, 8624/8619, 9801/9800, 14875/14572 | ⟨1106 1753 2568 3105 3826 4093 4521] | -0.021 | 0.045 | 4.11 |
Rank-2 temperaments
Periods per 8ve |
Generator (Reduced) |
Cents (Reduced) |
Associated Ratio |
Temperaments |
---|---|---|---|---|
1 | 213\1106 | 231.103 | 8/7 | Orga |
1 | 401\1106 | 435.081 | 9/7 | Supermajor |
2 | 401\1106 | 435.081 | 9/7 | Semisupermajor |
7 | 479\1106 (5\1106) |
519.711 (5.424) |
27/20 (325/324) |
Brahmagupta |
79 | 459\1106 (11\1106) |
498.011 (11.935) |
4/3 (?) |
Gold |