1600edo: Difference between revisions
No edit summary |
m →Regular temperament properties: cleanup |
||
Line 12: | Line 12: | ||
== Regular temperament properties == | == Regular temperament properties == | ||
{| class="wikitable center-4 center-5 center-6" | {| class="wikitable center-4 center-5 center-6" | ||
! rowspan="2" |Subgroup | ! rowspan="2" | [[Subgroup]] | ||
! rowspan="2" |[[Comma list]] | ! rowspan="2" | [[Comma list]] | ||
! rowspan="2" |[[Mapping]] | ! rowspan="2" | [[Mapping]] | ||
! rowspan="2" |Optimal | ! rowspan="2" | Optimal<br>8ve Stretch (¢) | ||
8ve | ! colspan="2" | Tuning Error | ||
! colspan="2" |Tuning | |||
|- | |- | ||
![[TE error|Absolute]] (¢) | ! [[TE error|Absolute]] (¢) | ||
![[TE simple badness|Relative]] (%) | ! [[TE simple badness|Relative]] (%) | ||
|- | |- | ||
|2.3.5 | | 2.3.5 | ||
|{{Monzo|-53 | | {{Monzo| -53 10 16 }}, {{monzo| 26 -75 40 }} | ||
|[{{val|1600 2536 3715}}] | | [{{val| 1600 2536 3715 }}] | ||
| -0.000318 | | -0.000318 | ||
|0.022794 | | 0.022794 | ||
| | | | ||
|- | |- | ||
|2.3.5.7 | | 2.3.5.7 | ||
|4375/4374, {{ | | 4375/4374, {{monzo| 36 -5 0 -10 }}, {{monzo| -17 5 16 -10 }} | ||
|[{{val|1600 2536 3715 4492}}] | | [{{val| 1600 2536 3715 4492 }}] | ||
| -0.015742 | | -0.015742 | ||
|0.033217 | | 0.033217 | ||
| | | | ||
|- | |- | ||
|2.3.5.7.11 | | 2.3.5.7.11 | ||
|3025/3024, 4375/4374, 184549376/184528125, 7680000000/7672950131 | | 3025/3024, 4375/4374, 184549376/184528125, 7680000000/7672950131 | ||
|[{{val|1600 2536 3715 4492 5535}}] | | [{{val| 1600 2536 3715 4492 5535 }}] | ||
| | | | ||
| | | | ||
| | | | ||
|- | |- | ||
|2.3.5.7.11.13 | | 2.3.5.7.11.13 | ||
|3025/3024, 4096/4095, 4375/4374, 91125/91091, 14236560/14235529 | | 3025/3024, 4096/4095, 4375/4374, 91125/91091, 14236560/14235529 | ||
|[{{val|1600 2536 3715 4492 5535 5921}}] | | [{{val| 1600 2536 3715 4492 5535 5921 }}] | ||
| | | | ||
| | | | ||
| | | | ||
|- | |- | ||
|2.3.5.7.11.13.17 | | 2.3.5.7.11.13.17 | ||
|2500/2499, 3025/3024, 4375/4374, 14875/14872, 154880/154791, 1724800/1724463 | | 2500/2499, 3025/3024, 4375/4374, 14875/14872, 154880/154791, 1724800/1724463 | ||
|[{{val|1600 2536 3715 4492 5535 5921 6540}}] | | [{{val| 1600 2536 3715 4492 5535 5921 6540 }}] | ||
| -0.016332 | | -0.016332 | ||
| | | | ||
| | | | ||
|} | |} | ||
=== Rank-2 temperaments === | === Rank-2 temperaments === | ||
{| class="wikitable center-all left-5" | {| class="wikitable center-all left-5" | ||
!Periods<br>per 8ve | ! Periods<br>per 8ve | ||
!Generator | ! Generator | ||
!Cents | ! Cents | ||
!Associated<br> | ! Associated<br>Ratio | ||
!Temperaments | ! Temperaments | ||
|- | |- | ||
|2 | | 2 | ||
|217\1600 | | 217\1600 | ||
|162.75 | | 162.75 | ||
|1125/1024 | | 1125/1024 | ||
|[[Kwazy]] | | [[Kwazy]] | ||
|- | |- | ||
|32 | | 32 | ||
|121\1600<br>(21/1600) | | 121\1600<br>(21/1600) | ||
|90.75<br>(15.75) | | 90.75<br>(15.75) | ||
|48828125/46294416<br>(?) | | 48828125/46294416<br>(?) | ||
|[[Windrose]] | | [[Windrose]] | ||
|- | |- | ||
|32 | | 32 | ||
|357\1600<br>(7\1600) | | 357\1600<br>(7\1600) | ||
|267.75<br>(5.25) | | 267.75<br>(5.25) | ||
|245/143<br>(?) | | 245/143<br>(?) | ||
|[[Germanium]] | | [[Germanium]] | ||
|- | |- | ||
|32 | | 32 | ||
|23\1600 | | 23\1600 | ||
|17.25 | | 17.25 | ||
|? | | ? | ||
|[[Dike]] | | [[Dike]] | ||
|- | |- | ||
|80 | | 80 | ||
|629\1600<br>(9\1600) | | 629\1600<br>(9\1600) | ||
|471.75<br>(6.75) | | 471.75<br>(6.75) | ||
|130/99<br>(?) | | 130/99<br>(?) | ||
|[[Tetraicosic]] | | [[Tetraicosic]] | ||
|} | |} |
Revision as of 08:51, 24 February 2023
← 1599edo | 1600edo | 1601edo → |
The 1600 equal divisions of the octave (1600edo), or the 1600-tone equal temperament (1600tet), 1600 equal temperament (1600et) when viewed from a regular temperament perspective, divides the octave into 1600 equal parts of exactly 750 millicents each.
Theory
1600edo is a very strong 37-limit system, being distinctly consistent in the 37-limit with a smaller relative error than anything else with this property until 4501. It is also the first division past 311 with a lower 43-limit relative error. One step of it is the relative cent for 16. It's high divisibility, high consistency limit, and compatibility with the decimal system make it a candidate for interval size measure.
In the 5-limit, it supports kwazy. In the 7-limit, it tempers out the ragisma, 4375/4374. In the 11-limit, it supports the rank-3 temperament thor.
Odd harmonics
Harmonic | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.000 | +0.045 | -0.064 | +0.174 | -0.068 | +0.222 | +0.045 | +0.237 | +0.226 | +0.173 | +0.214 |
Relative (%) | +0.0 | +6.0 | -8.5 | +23.2 | -9.1 | +29.6 | +5.9 | +31.6 | +30.1 | +23.0 | +28.6 | |
Steps (reduced) |
1600 (0) |
2536 (936) |
3715 (515) |
4492 (1292) |
5535 (735) |
5921 (1121) |
6540 (140) |
6797 (397) |
7238 (838) |
7773 (1373) |
7927 (1527) |
Subsets and supersets
1600's divisors are 1, 2, 4, 5, 8, 10, 16, 20, 25, 32, 40, 50, 64, 80, 100, 160, 200, 320, 400, 800.
Regular temperament properties
Subgroup | Comma list | Mapping | Optimal 8ve Stretch (¢) |
Tuning Error | |
---|---|---|---|---|---|
Absolute (¢) | Relative (%) | ||||
2.3.5 | [-53 10 16⟩, [26 -75 40⟩ | [⟨1600 2536 3715]] | -0.000318 | 0.022794 | |
2.3.5.7 | 4375/4374, [36 -5 0 -10⟩, [-17 5 16 -10⟩ | [⟨1600 2536 3715 4492]] | -0.015742 | 0.033217 | |
2.3.5.7.11 | 3025/3024, 4375/4374, 184549376/184528125, 7680000000/7672950131 | [⟨1600 2536 3715 4492 5535]] | |||
2.3.5.7.11.13 | 3025/3024, 4096/4095, 4375/4374, 91125/91091, 14236560/14235529 | [⟨1600 2536 3715 4492 5535 5921]] | |||
2.3.5.7.11.13.17 | 2500/2499, 3025/3024, 4375/4374, 14875/14872, 154880/154791, 1724800/1724463 | [⟨1600 2536 3715 4492 5535 5921 6540]] | -0.016332 |
Rank-2 temperaments
Periods per 8ve |
Generator | Cents | Associated Ratio |
Temperaments |
---|---|---|---|---|
2 | 217\1600 | 162.75 | 1125/1024 | Kwazy |
32 | 121\1600 (21/1600) |
90.75 (15.75) |
48828125/46294416 (?) |
Windrose |
32 | 357\1600 (7\1600) |
267.75 (5.25) |
245/143 (?) |
Germanium |
32 | 23\1600 | 17.25 | ? | Dike |
80 | 629\1600 (9\1600) |
471.75 (6.75) |
130/99 (?) |
Tetraicosic |