94edo: Difference between revisions
→Scales: folding the table |
m Cleanup |
||
Line 1: | Line 1: | ||
{{Infobox ET}} | {{Infobox ET}} | ||
{{EDO intro|94}} | |||
== Theory == | == Theory == | ||
Line 7: | Line 7: | ||
The list of 23-limit commas it tempers out is huge, but it is worth noting that it tempers out [[32805/32768]] and is thus a [[schismatic]] system, that it tempers out [[225/224]] and [[385/384]] and so is a [[marvel]] system, and that it also tempers out [[3125/3087]], [[4000/3969]], [[5120/5103]] and [[540/539]]. It provides the [[optimal patent val]] for the rank-5 temperament tempering out [[275/273]], and for a number of other temperaments, such as [[isis]]. | The list of 23-limit commas it tempers out is huge, but it is worth noting that it tempers out [[32805/32768]] and is thus a [[schismatic]] system, that it tempers out [[225/224]] and [[385/384]] and so is a [[marvel]] system, and that it also tempers out [[3125/3087]], [[4000/3969]], [[5120/5103]] and [[540/539]]. It provides the [[optimal patent val]] for the rank-5 temperament tempering out [[275/273]], and for a number of other temperaments, such as [[isis]]. | ||
94edo is an excellent | 94edo is an excellent edo for [[Carlos Beta]] scale, since the difference between 5 steps of 94edo and 1 step of Carlos Beta is only -0.00314534 cents. | ||
=== Prime harmonics === | === Prime harmonics === | ||
{{ | {{Harmonics in equal|94|columns=11}} | ||
== Intervals == | == Intervals == | ||
{{ | {{Main| Table of 94edo intervals }} | ||
== Regular temperament properties == | == Regular temperament properties == | ||
{| class="wikitable center-4 center-5 center-6" | {| class="wikitable center-4 center-5 center-6" | ||
! rowspan="2" | Subgroup | ! rowspan="2" | [[Subgroup]] | ||
! rowspan="2" | [[Comma list]] | ! rowspan="2" | [[Comma list|Comma List]] | ||
! rowspan="2" | [[Mapping]] | ! rowspan="2" | [[Mapping]] | ||
! rowspan="2" | Optimal<br>8ve | ! rowspan="2" | Optimal<br>8ve Stretch (¢) | ||
! colspan="2" | Tuning | ! colspan="2" | Tuning Error | ||
|- | |- | ||
! [[TE error|Absolute]] (¢) | ! [[TE error|Absolute]] (¢) | ||
Line 83: | Line 83: | ||
|} | |} | ||
94et is lower in relative error than any previous equal temperaments in the 23-limit, and the | 94et is lower in relative error than any previous equal temperaments in the 23-limit, and the equal temperament that does better in this subgroup is 193. | ||
=== Rank-2 temperaments === | === Rank-2 temperaments === | ||
{| class="wikitable center-all right-3 left-5" | {| class="wikitable center-all right-3 left-5" | ||
! Periods<br>per | ! Periods<br>per 8ve | ||
! Generator | ! Generator | ||
! Cents | ! Cents | ||
! Associated<br> | ! Associated<br>Ratio | ||
! Temperament | ! Temperament | ||
|- | |- | ||
Line 183: | Line 183: | ||
* [[Garibaldi17]] | * [[Garibaldi17]] | ||
Since 94edo has a step of 12.766 cents, it also allows one to use its | Since 94edo has a step of 12.766 cents, it also allows one to use its mos scales as circulating temperaments and is the first edo to allows one to use a nohajira, pajara or miracle mos scale a as circulating temperament{{clarify}}. | ||
{| class="wikitable mw-collapsible mw-collapsed" | {| class="wikitable mw-collapsible mw-collapsed" | ||
|+Circulating temperaments in 94edo | |+ style=white-space:nowrap | Circulating temperaments in 94edo | ||
!Tones | !Tones | ||
!Pattern | !Pattern | ||
Line 419: | Line 419: | ||
|} | |} | ||
[[Category:Garibaldi]] | [[Category:Garibaldi]] | ||
[[Category:Marvel]] | [[Category:Marvel]] |
Revision as of 08:42, 14 February 2023
← 93edo | 94edo | 95edo → |
(semiconvergent)
Theory
94edo is a remarkable all-around utility tuning system, good from low prime limit to very high prime limit situations. It is the first edo to be consistent through the 23-odd-limit, and no other edo is so consistent until 282 and 311 make their appearance.
The list of 23-limit commas it tempers out is huge, but it is worth noting that it tempers out 32805/32768 and is thus a schismatic system, that it tempers out 225/224 and 385/384 and so is a marvel system, and that it also tempers out 3125/3087, 4000/3969, 5120/5103 and 540/539. It provides the optimal patent val for the rank-5 temperament tempering out 275/273, and for a number of other temperaments, such as isis.
94edo is an excellent edo for Carlos Beta scale, since the difference between 5 steps of 94edo and 1 step of Carlos Beta is only -0.00314534 cents.
Prime harmonics
Harmonic | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.00 | +0.17 | -3.33 | +1.39 | -2.38 | +2.03 | -2.83 | -3.90 | -2.74 | +4.47 | +3.90 |
Relative (%) | +0.0 | +1.4 | -26.1 | +10.9 | -18.7 | +15.9 | -22.2 | -30.5 | -21.5 | +35.0 | +30.6 | |
Steps (reduced) |
94 (0) |
149 (55) |
218 (30) |
264 (76) |
325 (43) |
348 (66) |
384 (8) |
399 (23) |
425 (49) |
457 (81) |
466 (90) |
Intervals
Regular temperament properties
Subgroup | Comma List | Mapping | Optimal 8ve Stretch (¢) |
Tuning Error | |
---|---|---|---|---|---|
Absolute (¢) | Relative (%) | ||||
2.3 | [149 -94⟩ | [⟨94 149]] | -0.054 | 0.054 | 0.43 |
2.3.5 | 32805/32768, 9765625/9565938 | [⟨94 149 218]] | +0.442 | 0.704 | 5.52 |
2.3.5.7 | 225/224, 3125/3087, 118098/117649 | [⟨94 149 218 264]] | +0.208 | 0.732 | 5.74 |
2.3.5.7.11 | 225/224, 385/384, 1331/1323, 2200/2187 | [⟨94 149 218 264 325]] | +0.304 | 0.683 | 5.35 |
2.3.5.7.11.13 | 225/224, 275/273, 325/324, 385/384, 1331/1323 | [⟨94 149 218 264 325 348]] | +0.162 | 0.699 | 5.48 |
2.3.5.7.11.13.17 | 170/169, 225/224, 275/273, 289/288, 325/324, 385/384 | [⟨94 149 218 264 325 348 384]] | +0.238 | 0.674 | 5.28 |
2.3.5.7.11.13.17.19 | 170/169, 190/189, 225/224, 275/273, 289/288, 325/324, 385/384 | [⟨94 149 218 264 325 348 384 399]] | +0.323 | 0.669 | 5.24 |
2.3.5.7.11.13.17.19.23 | 170/169, 190/189, 209/208, 225/224, 275/273, 289/288, 300/299, 323/322 | [⟨94 149 218 264 325 348 384 399 425]] | +0.354 | 0.637 | 4.99 |
94et is lower in relative error than any previous equal temperaments in the 23-limit, and the equal temperament that does better in this subgroup is 193.
Rank-2 temperaments
Periods per 8ve |
Generator | Cents | Associated Ratio |
Temperament |
---|---|---|---|---|
1 | 3\94 | 38.30 | 49/48 | Slender |
1 | 5\94 | 63.83 | 25/24 | Sycamore / betic |
1 | 11\94 | 140.43 | 243/224 | Tsaharuk / quanic |
1 | 13\94 | 165.96 | 11/10 | Tertiaschis |
1 | 19\94 | 242.55 | 147/128 | Septiquarter |
1 | 39\94 | 497.87 | 4/3 | Helmholtz / garibaldi / cassandra |
2 | 2\94 | 25.53 | 64/63 | Ketchup |
2 | 11\94 | 140.43 | 27/25 | Fifive |
2 | 30\94 | 382.98 | 5/4 | Wizard / gizzard |
2 | 34\94 | 434.04 | 9/7 | Pogo / supers |
2 | 43\94 | 548.94 | 11/8 | Kleischismic |
Below are some 23-limit temperaments supported by 94et. It might be noted that 94, a very good tuning for garibaldi temperament, shows us how to extend it to the 23-limit.
- 46&94 ⟨⟨ 8 30 -18 -4 -28 8 -24 2 … ]]
- 68&94 ⟨⟨ 20 28 2 -10 24 20 34 52 … ]]
- 53&94 ⟨⟨ 1 -8 -14 23 20 -46 -3 -35 … ]] (one garibaldi)
- 41&94 ⟨⟨ 1 -8 -14 23 20 48 -3 -35 … ]] (another garibaldi, only differing in the mappings of 17 and 23)
- 135&94 ⟨⟨ 1 -8 -14 23 20 48 -3 59 … ]] (another garibaldi)
- 130&94 ⟨⟨ 6 -48 10 -50 26 6 -18 -22 … ]] (a pogo extension)
- 58&94 ⟨⟨ 6 46 10 44 26 6 -18 -22 … ]] (a supers extension)
- 50&94 ⟨⟨ 24 -4 40 -12 10 24 22 6 … ]]
- 72&94 ⟨⟨ 12 -2 20 -6 52 12 -36 -44 … ]] (a gizzard extension)
- 80&94 ⟨⟨ 18 44 30 38 -16 18 40 28 … ]]
- 94 solo ⟨⟨ 12 -2 20 -6 -42 12 -36 -44 … ]] (a rank one temperament!)
Temperaments to which 94et can be detempered:
- Satin (94&311) ⟨⟨ 3 70 -42 69 -34 50 85 83 … ]]
- 94&422 ⟨⟨ 8 124 -18 90 -28 102 164 96 … ]]
Scales
Since 94edo has a step of 12.766 cents, it also allows one to use its mos scales as circulating temperaments and is the first edo to allows one to use a nohajira, pajara or miracle mos scale a as circulating temperament[clarification needed].
Tones | Pattern | L:s |
---|---|---|
5 | 4L 1s | 19:18 |
6 | 4L 2s | 16:15 |
7 | 3L 4s | 14:13 |
8 | 6L 2s | 12:11 |
9 | 4L 5s | 11:10 |
10 | 4L 6s | 10:9 |
11 | 6L 5s | 9:8 |
12 | 10L 2s | 8:7 |
13 | 3L 10s | |
14 | 10L 4s | 7:6 |
15 | 4L 11s | |
16 | 14L 2s | 6:5 |
17 | 9L 8s | |
18 | 4L 14s | |
19 | 18L 1s | 5:4 |
20 | 14L 6s | |
21 | 10L 11s | |
22 | 6L 16s | |
23 | 2L 21s | |
24 | 22L 2s | 4:3 |
25 | 19L 6s | |
26 | 16L 10s | |
27 | 13L 14s | |
28 | 10L 18s | |
29 | 7L 22s | |
30 | 4L 22s | |
31 | 1L 30s | |
32 | 30L 2s | 3:2 |
33 | 28L 5s | |
34 | 26L 8s | |
35 | 24L 11s | |
36 | 22L 14s | |
37 | 20L 17s | |
38 | 18L 20s | |
39 | 16L 23s | |
40 | 14L 26s | |
41 | 13L 28s | |
42 | 10L 32s | |
43 | 8L 35s | |
44 | 6L 38s | |
45 | 4L 41s | |
46 | 2L 44s | |
47 | 47edo | equal |
48 | 46L 2s | 2:1 |
49 | 45L 4s | |
50 | 44L 6s | |
51 | 43L 8s | |
52 | 42L 10s | |
53 | 41L 12s | |
54 | 40L 14s | |
55 | 39L 16s | |
56 | 38L 18s | |
57 | 37L 20s | |
58 | 36L 22s | |
59 | 35L 24s | |
60 | 34L 26s | |
61 | 33L 28s | |
62 | 32L 30s | |
63 | 31L 32s | |
64 | 30L 34s | |
65 | 29L 36s | |
66 | 28L 38s | |
67 | 27L 40s | |
68 | 26L 42s | |
69 | 25L 44s | |
70 | 24L 46s | |
71 | 23L 48s | |
72 | 22L 50s | |
73 | 21L 52s | |
74 | 20L 54s | |
75 | 19L 56s |