Compton family: Difference between revisions
m Style |
m Update optimal tuning to include the period |
||
Line 1: | Line 1: | ||
The ''' | The '''compton family''' tempers out the [[Pythagorean comma]], 531441/524288 = {{monzo| -19 12 }}, and hence the fifths form a closed 12-note circle of fifths, identical to [[12edo]]. While the tuning of the fifth will be that of 12edo, two cents flat, the tuning of the larger primes is not so constrained, and the point of these temperaments is to improve on it. | ||
== Compton == | == Compton == | ||
Line 12: | Line 12: | ||
Mapping generators: ~256/243, ~5 | Mapping generators: ~256/243, ~5 | ||
[[Optimal tuning]] ([[POTE]]): ~5/4 = 384.884 (~81/80 = 15.116) | [[Optimal tuning]] ([[POTE]]): ~256/243 = 1\12, ~5/4 = 384.884 (~81/80 = 15.116) | ||
{{Val list|legend=1| 12, 48, 60, 72, 84, 156, 240, 396b, 636bbc }} | {{Val list|legend=1| 12, 48, 60, 72, 84, 156, 240, 396b, 636bbc }} | ||
Line 31: | Line 31: | ||
[[Mapping]]: [{{val| 12 19 0 -22 }}, {{val| 0 0 1 2 }}] | [[Mapping]]: [{{val| 12 19 0 -22 }}, {{val| 0 0 1 2 }}] | ||
[[Optimal tuning]] ([[POTE]]): ~5/4 = 383.7752 (~126/125 = 16.2248) | [[Optimal tuning]] ([[POTE]]): ~256/243 = 1\12, ~5/4 = 383.7752 (~126/125 = 16.2248) | ||
{{Val list|legend=1| 12, 48d, 60, 72, 228, 300c, 372bc, 444bc }} | {{Val list|legend=1| 12, 48d, 60, 72, 228, 300c, 372bc, 444bc }} | ||
Line 44: | Line 44: | ||
Mapping: [{{val|12 19 0 -22 -42 }}, {{val| 0 0 1 2 3 }}] | Mapping: [{{val|12 19 0 -22 -42 }}, {{val| 0 0 1 2 3 }}] | ||
Optimal tuning (POTE): ~5/4 = 383.2660 (~100/99 = 16.7340) | Optimal tuning (POTE): ~256/243 = 1\12, ~5/4 = 383.2660 (~100/99 = 16.7340) | ||
Optimal GPV sequence: {{Val list| 12, 48dee, 60e, 72 }} | Optimal GPV sequence: {{Val list| 12, 48dee, 60e, 72 }} | ||
Line 57: | Line 57: | ||
Mapping: [{{val| 12 19 0 -22 -42 -67 }}, {{val| 0 0 1 2 3 4 }}] | Mapping: [{{val| 12 19 0 -22 -42 -67 }}, {{val| 0 0 1 2 3 4 }}] | ||
Optimal tuning (POTE): ~5/4 = 383.9628 (~105/104 = 16.0372) | Optimal tuning (POTE): ~256/243 = 1\12, ~5/4 = 383.9628 (~105/104 = 16.0372) | ||
Optimal GPV sequence: {{Val list| 12f, 48defff, 60eff, 72, 228f }} | Optimal GPV sequence: {{Val list| 12f, 48defff, 60eff, 72, 228f }} | ||
Line 70: | Line 70: | ||
Mapping: [{{val| 12 19 0 -22 -42 -67 49 }}, {{val| 0 0 1 2 3 4 0 }}] | Mapping: [{{val| 12 19 0 -22 -42 -67 49 }}, {{val| 0 0 1 2 3 4 0 }}] | ||
Optimal tuning (POTE): ~5/4 = 383.7500 (~105/104 = 16.2500) | Optimal tuning (POTE): ~18/17 = 1\12, ~5/4 = 383.7500 (~105/104 = 16.2500) | ||
Optimal GPV sequence: {{Val list| 12f, 60eff, 72 }} | Optimal GPV sequence: {{Val list| 12f, 60eff, 72 }} | ||
Line 83: | Line 83: | ||
Mapping: [{{val| 12 19 0 -22 -42 100 }}, {{val| 0 0 1 2 3 -2 }}] | Mapping: [{{val| 12 19 0 -22 -42 100 }}, {{val| 0 0 1 2 3 -2 }}] | ||
Optimal tuning (POTE): ~5/4 = 382.6116 (~100/99 = 17.3884) | Optimal tuning (POTE): ~256/243 = 1\12, ~5/4 = 382.6116 (~100/99 = 17.3884) | ||
Optimal GPV sequence: {{Val list| 12, 60e, 72, 204cdef, 276cdeff }} | Optimal GPV sequence: {{Val list| 12, 60e, 72, 204cdef, 276cdeff }} | ||
Line 96: | Line 96: | ||
Mapping: [{{val| 12 19 0 -22 -42 100 49 }}, {{val| 0 0 1 2 3 -2 0 }}] | Mapping: [{{val| 12 19 0 -22 -42 100 49 }}, {{val| 0 0 1 2 3 -2 0 }}] | ||
Optimal tuning (POTE): ~5/4 = 382.5968 (~100/99 = 17.4032) | Optimal tuning (POTE): ~18/17 = 1\12, ~5/4 = 382.5968 (~100/99 = 17.4032) | ||
Optimal GPV sequence: {{Val list| 12, 60e, 72, 204cdefg, 276cdeffgg }} | Optimal GPV sequence: {{Val list| 12, 60e, 72, 204cdefg, 276cdeffgg }} | ||
Line 113: | Line 113: | ||
Mapping generators: ~16/15, ~7 | Mapping generators: ~16/15, ~7 | ||
[[Optimal tuning]] ([[POTE]]): ~64/63 = 26.790 | [[Optimal tuning]] ([[POTE]]): ~16/15 = 1\12, ~64/63 = 26.790 | ||
{{Val list|legend=1| 12, 24, 36, 48c }} | {{Val list|legend=1| 12, 24, 36, 48c }} | ||
Line 126: | Line 126: | ||
Mapping: [{{val| 12 19 28 0 -26 }}, {{val| 0 0 0 1 2 }}] | Mapping: [{{val| 12 19 28 0 -26 }}, {{val| 0 0 0 1 2 }}] | ||
Optimal tuning (POTE): ~64/63 = 22.723 | Optimal tuning (POTE): ~16/15 = 1\12, ~64/63 = 22.723 | ||
Optimal GPV sequence: {{Val list| 12, 36e, 48c, 108ccd }} | Optimal GPV sequence: {{Val list| 12, 36e, 48c, 108ccd }} | ||
Line 139: | Line 139: | ||
Mapping: [{{val| 12 19 28 0 109 }}, {{val| 0 0 0 1 -2 }}] | Mapping: [{{val| 12 19 28 0 109 }}, {{val| 0 0 0 1 -2 }}] | ||
Optimal tuning (POTE): ~64/63 = 27.864 | Optimal tuning (POTE): ~16/15 = 1\12, ~64/63 = 27.864 | ||
Optimal GPV sequence: {{Val list| 36, 48c, 84c }} | Optimal GPV sequence: {{Val list| 36, 48c, 84c }} | ||
Line 152: | Line 152: | ||
Mapping: [{{val| 12 19 28 0 8 }}, {{val| 0 0 0 1 1 }}] | Mapping: [{{val| 12 19 28 0 8 }}, {{val| 0 0 0 1 1 }}] | ||
Optimal tuning (POTE): ~36/35 = 32.776 | Optimal tuning (POTE): ~16/15 = 1\12, ~36/35 = 32.776 | ||
Optimal GPV sequence: {{Val list| 12, 24, 36, 72ce }} | Optimal GPV sequence: {{Val list| 12, 24, 36, 72ce }} | ||
Line 165: | Line 165: | ||
Mapping: [{{val| 12 19 28 0 8 11 }}, {{val| 0 0 0 1 1 1 }}] | Mapping: [{{val| 12 19 28 0 8 11 }}, {{val| 0 0 0 1 1 1 }}] | ||
Optimal tuning (POTE): ~36/35 = 37.232 | Optimal tuning (POTE): ~16/15 = 1\12, ~36/35 = 37.232 | ||
Optimal GPV sequence: {{Val list| 12f, 24, 36f, 60cf }} | Optimal GPV sequence: {{Val list| 12f, 24, 36f, 60cf }} | ||
Line 178: | Line 178: | ||
Mapping: [{{val| 12 19 28 0 8 11 49 }}, {{val| 0 0 0 1 1 1 0 }}] | Mapping: [{{val| 12 19 28 0 8 11 49 }}, {{val| 0 0 0 1 1 1 0 }}] | ||
Optimal tuning (POTE): ~36/35 = 39.777 | Optimal tuning (POTE): ~18/17 = 1\12, ~36/35 = 39.777 | ||
Optimal GPV sequence: {{Val list| 12f, 24, 36f, 60cf }} | Optimal GPV sequence: {{Val list| 12f, 24, 36f, 60cf }} | ||
Line 191: | Line 191: | ||
Mapping: [{{val| 12 19 28 0 8 11 49 51 }}, {{val| 0 0 0 1 1 1 0 0 }}] | Mapping: [{{val| 12 19 28 0 8 11 49 51 }}, {{val| 0 0 0 1 1 1 0 0 }}] | ||
Optimal tuning (POTE): ~36/35 = 40.165 | Optimal tuning (POTE): ~18/17 = 1\12, ~36/35 = 40.165 | ||
Optimal GPV sequence: {{Val list| 12f, 24, 36f, 60cf }} | Optimal GPV sequence: {{Val list| 12f, 24, 36f, 60cf }} | ||
Line 204: | Line 204: | ||
Mapping: [{{val| 12 19 28 0 8 78 }}, {{val| 0 0 0 1 1 -1 }}] | Mapping: [{{val| 12 19 28 0 8 78 }}, {{val| 0 0 0 1 1 -1 }}] | ||
Optimal tuning (POTE): ~36/35 = 37.688 | Optimal tuning (POTE): ~16/15 = 1\12, ~36/35 = 37.688 | ||
Optimal GPV sequence: {{Val list| 12, 24, 36, 60c }} | Optimal GPV sequence: {{Val list| 12, 24, 36, 60c }} | ||
Line 217: | Line 217: | ||
Mapping: [{{val| 12 19 28 0 8 78 49 }}, {{val| 0 0 0 1 1 -1 0 }}] | Mapping: [{{val| 12 19 28 0 8 78 49 }}, {{val| 0 0 0 1 1 -1 0 }}] | ||
Optimal tuning (POTE): ~36/35 = 38.097 | Optimal tuning (POTE): ~18/17 = 1\12, ~36/35 = 38.097 | ||
Optimal GPV sequence: {{Val list| 12, 24, 36, 60c }} | Optimal GPV sequence: {{Val list| 12, 24, 36, 60c }} | ||
Line 230: | Line 230: | ||
Mapping: [{{val| 12 19 28 0 8 78 49 51 }}, {{val| 0 0 0 1 1 -1 0 0 }}] | Mapping: [{{val| 12 19 28 0 8 78 49 51 }}, {{val| 0 0 0 1 1 -1 0 0 }}] | ||
Optimal tuning (POTE): ~36/35 = 38.080 | Optimal tuning (POTE): ~18/17 = 1\12, ~36/35 = 38.080 | ||
Optimal GPV sequence: {{Val list| 12, 24, 36, 60c }} | Optimal GPV sequence: {{Val list| 12, 24, 36, 60c }} | ||
Line 247: | Line 247: | ||
Mapping generators: ~16/15, ~11 | Mapping generators: ~16/15, ~11 | ||
[[Optimal tuning]] ([[POTE]]): ~45/44 = 34.977 | [[Optimal tuning]] ([[POTE]]): ~16/15 = 1\12, ~45/44 = 34.977 | ||
{{Val list|legend=1| 12, 24d }} | {{Val list|legend=1| 12, 24d }} | ||
Line 256: | Line 256: | ||
The hours temperament has a period of 1/24 octave and tempers out the [[cataharry comma]] (19683/19600) and the mirwomo comma (33075/32768). The name "hours" was so named for the following reasons – the period is 1/24 octave, and there are 24 hours per a day. | The hours temperament has a period of 1/24 octave and tempers out the [[cataharry comma]] (19683/19600) and the mirwomo comma (33075/32768). The name "hours" was so named for the following reasons – the period is 1/24 octave, and there are 24 hours per a day. | ||
Subgroup: 2.3.5.7 | [[Subgroup]]: 2.3.5.7 | ||
[[Comma list]]: 19683/19600, 33075/32768 | [[Comma list]]: 19683/19600, 33075/32768 | ||
Line 266: | Line 266: | ||
Mapping generators: ~36/35, ~5 | Mapping generators: ~36/35, ~5 | ||
[[Optimal tuning]] ([[POTE]]): ~5/4 = 384.033 | [[Optimal tuning]] ([[POTE]]): ~36/35 = 1\24, ~5/4 = 384.033 | ||
{{Val list|legend=1| 24, 48, 72, 312bd, 384bcdd, 456bcdd, 528bcdd, 600bccdd }} | {{Val list|legend=1| 24, 48, 72, 312bd, 384bcdd, 456bcdd, 528bcdd, 600bccdd }} | ||
Line 279: | Line 279: | ||
Mapping: [{{val| 24 38 0 123 83 }}, {{val| 0 0 1 -1 0 }}] | Mapping: [{{val| 24 38 0 123 83 }}, {{val| 0 0 1 -1 0 }}] | ||
Optimal tuning (POTE): ~5/4 = 384.054 | Optimal tuning (POTE): ~36/35 = 1\24, ~5/4 = 384.054 | ||
Optimal GPV sequence: {{Val list| 24, 48, 72, 312bd, 384bcdd, 456bcdde, 528bcdde }} | Optimal GPV sequence: {{Val list| 24, 48, 72, 312bd, 384bcdd, 456bcdde, 528bcdde }} | ||
Line 292: | Line 292: | ||
Mapping: [{{val| 24 38 0 123 83 33 }}, {{val| 0 0 1 -1 0 1 }}] | Mapping: [{{val| 24 38 0 123 83 33 }}, {{val| 0 0 1 -1 0 1 }}] | ||
Optimal tuning (POTE): ~5/4 = 384.652 | Optimal tuning (POTE): ~36/35 = 1\24, ~5/4 = 384.652 | ||
Optimal GPV sequence: {{Val list| 24, 48f, 72, 168df, 240dff }} | Optimal GPV sequence: {{Val list| 24, 48f, 72, 168df, 240dff }} | ||
Line 301: | Line 301: | ||
The decades temperament has a period of 1/36 octave and tempers out the [[gamelisma]] (1029/1024) and the stearnsma (118098/117649). The name "decades" was so named for the following reasons – the period is 1/36 octave, and there are 36 decades (''ten days'') per a year (12 months × 3 decades per a month). | The decades temperament has a period of 1/36 octave and tempers out the [[gamelisma]] (1029/1024) and the stearnsma (118098/117649). The name "decades" was so named for the following reasons – the period is 1/36 octave, and there are 36 decades (''ten days'') per a year (12 months × 3 decades per a month). | ||
Subgroup: 2.3.5.7 | [[Subgroup]]: 2.3.5.7 | ||
[[Comma list]]: 1029/1024, 118098/117649 | [[Comma list]]: 1029/1024, 118098/117649 | ||
Line 311: | Line 311: | ||
{{Multival|legend=1| 0 36 0 57 0 -101 }} | {{Multival|legend=1| 0 36 0 57 0 -101 }} | ||
[[Optimal tuning]] ([[POTE]]): ~5/4 = 384.764 | [[Optimal tuning]] ([[POTE]]): ~49/48 = 1\36, ~5/4 = 384.764 | ||
{{Val list|legend=1| 36, 72, 252, 324bd, 396bd }} | {{Val list|legend=1| 36, 72, 252, 324bd, 396bd }} | ||
Line 324: | Line 324: | ||
Mapping: [{{val| 36 57 0 101 41 }}, {{val| 0 0 1 0 1 }}] | Mapping: [{{val| 36 57 0 101 41 }}, {{val| 0 0 1 0 1 }}] | ||
Optimal tuning (POTE): ~5/4 = 384.150 | Optimal tuning (POTE): ~49/48 = 1\36, ~5/4 = 384.150 | ||
Optimal GPV sequence: {{Val list| 36, 72, 396bd, 468bcd, 540bcd, 612bccdd, 684bbccdd, 756bbccdd }} | Optimal GPV sequence: {{Val list| 36, 72, 396bd, 468bcd, 540bcd, 612bccdd, 684bbccdd, 756bbccdd }} | ||
Line 331: | Line 331: | ||
== Omicronbeta == | == Omicronbeta == | ||
Subgroup: 2.3.5.7.11.13 | [[Subgroup]]: 2.3.5.7.11.13 | ||
[[Comma list]]: 225/224, 243/242, 441/440, 4375/4356 | [[Comma list]]: 225/224, 243/242, 441/440, 4375/4356 | ||
Line 339: | Line 339: | ||
Mapping generators: ~100/99, ~13 | Mapping generators: ~100/99, ~13 | ||
[[Optimal tuning]] ([[POTE]]): ~13/8 = 837.814 | [[Optimal tuning]] ([[POTE]]): ~100/99 = 1\72, ~13/8 = 837.814 | ||
{{Val list|legend=1| 72, 144, 216c, 288cdf, 504bcdef }} | {{Val list|legend=1| 72, 144, 216c, 288cdf, 504bcdef }} |
Revision as of 13:41, 21 December 2022
The compton family tempers out the Pythagorean comma, 531441/524288 = [-19 12⟩, and hence the fifths form a closed 12-note circle of fifths, identical to 12edo. While the tuning of the fifth will be that of 12edo, two cents flat, the tuning of the larger primes is not so constrained, and the point of these temperaments is to improve on it.
Compton
Compton tempers out the Pythagorean comma and has a period of 1\12, so it is the 12edo circle of fifths with an independent dimension for the harmonic 5. Equivalent generators are 5/4, 6/5, 10/9, 16/15 (the secor), 45/32, 135/128 and most importantly, 81/80. In terms of equal temperaments, it is the 12&72 temperament, and 72edo, 84edo or 240edo make for good tunings.
Subgroup: 2.3.5
Comma list: 531441/524288
Mapping: [⟨12 19 0], ⟨0 0 1]
Mapping generators: ~256/243, ~5
Optimal tuning (POTE): ~256/243 = 1\12, ~5/4 = 384.884 (~81/80 = 15.116)
Badness: 0.094494
Septimal compton
Septimal compton is also known as waage. In terms of the normal list, compton adds 413343/409600 = [-14 10 -2 1⟩ to the Pythagorean comma; however, it can also be characterized by saying it adds 225/224.
In either the 5- or 7-limit, 240edo is an excellent tuning, with 81/80 coming in at 15 cents exactly. In the 12edo, the major third is sharp by 13.686 cents, and the minor third flat by 15.641 cents; adjusting these down and up by 15 cents puts them in excellent tune.
In terms of the normal comma list, we may add 8019/8000 to get to the 11-limit version of compton, which also adds 441/440. For this 72edo can be recommended as a tuning.
Subgroup: 2.3.5.7
Comma list: 225/224, 250047/250000
Mapping: [⟨12 19 0 -22], ⟨0 0 1 2]]
Optimal tuning (POTE): ~256/243 = 1\12, ~5/4 = 383.7752 (~126/125 = 16.2248)
Badness: 0.035686
11-limit
Subgroup: 2.3.5.7.11
Comma list: 225/224, 441/440, 4375/4356
Mapping: [⟨12 19 0 -22 -42], ⟨0 0 1 2 3]]
Optimal tuning (POTE): ~256/243 = 1\12, ~5/4 = 383.2660 (~100/99 = 16.7340)
Optimal GPV sequence: Template:Val list
Badness: 0.022235
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 225/224, 351/350, 364/363, 441/440
Mapping: [⟨12 19 0 -22 -42 -67], ⟨0 0 1 2 3 4]]
Optimal tuning (POTE): ~256/243 = 1\12, ~5/4 = 383.9628 (~105/104 = 16.0372)
Optimal GPV sequence: Template:Val list
Badness: 0.021852
17-limit
Subgroup: 2.3.5.7.11.13.17
Comma list: 221/220, 225/224, 289/288, 351/350, 441/440
Mapping: [⟨12 19 0 -22 -42 -67 49], ⟨0 0 1 2 3 4 0]]
Optimal tuning (POTE): ~18/17 = 1\12, ~5/4 = 383.7500 (~105/104 = 16.2500)
Optimal GPV sequence: Template:Val list
Badness: 0.017131
Comptone
Subgroup: 2.3.5.7.11.13
Comma list: 225/224, 325/324, 441/440, 1001/1000
Mapping: [⟨12 19 0 -22 -42 100], ⟨0 0 1 2 3 -2]]
Optimal tuning (POTE): ~256/243 = 1\12, ~5/4 = 382.6116 (~100/99 = 17.3884)
Optimal GPV sequence: Template:Val list
Badness: 0.025144
17-limit
Subgroup: 2.3.5.7.11.13.17
Comma list: 225/224, 273/272, 289/288, 325/324, 441/440
Mapping: [⟨12 19 0 -22 -42 100 49], ⟨0 0 1 2 3 -2 0]]
Optimal tuning (POTE): ~18/17 = 1\12, ~5/4 = 382.5968 (~100/99 = 17.4032)
Optimal GPV sequence: Template:Val list
Badness: 0.016361
Catler
In terms of the normal comma list, catler is characterized by the addition of the schisma, 32805/32768, to the Pythagorean comma, though it can also be characterized as adding 81/80, 128/125 or 648/625. In any event, the 5-limit is exactly the same as the 5-limit of 12edo. Catler can also be characterized as the 12 & 24 temperament. 36edo or 48edo are possible tunings. Possible generators are 36/35, 21/20, 15/14, 8/7, 7/6, 9/7, 7/5, and most importantly, 64/63.
Subgroup: 2.3.5.7
Comma list: 81/80, 128/125
Mapping: [⟨12 19 28 0], ⟨0 0 0 1]]
Mapping generators: ~16/15, ~7
Optimal tuning (POTE): ~16/15 = 1\12, ~64/63 = 26.790
Badness: 0.050297
11-limit
Subgroup: 2.3.5.7.11
Comma list: 81/80, 99/98, 128/125
Mapping: [⟨12 19 28 0 -26], ⟨0 0 0 1 2]]
Optimal tuning (POTE): ~16/15 = 1\12, ~64/63 = 22.723
Optimal GPV sequence: Template:Val list
Badness: 0.058213
Catlat
Subgroup: 2.3.5.7.11
Comma list: 81/80, 128/125, 540/539
Mapping: [⟨12 19 28 0 109], ⟨0 0 0 1 -2]]
Optimal tuning (POTE): ~16/15 = 1\12, ~64/63 = 27.864
Optimal GPV sequence: Template:Val list
Badness: 0.081909
Catcall
Subgroup: 2.3.5.7.11
Comma list: 56/55, 81/80, 128/125
Mapping: [⟨12 19 28 0 8], ⟨0 0 0 1 1]]
Optimal tuning (POTE): ~16/15 = 1\12, ~36/35 = 32.776
Optimal GPV sequence: Template:Val list
Badness: 0.034478
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 56/55, 66/65, 81/80, 105/104
Mapping: [⟨12 19 28 0 8 11], ⟨0 0 0 1 1 1]]
Optimal tuning (POTE): ~16/15 = 1\12, ~36/35 = 37.232
Optimal GPV sequence: Template:Val list
Badness: 0.028363
17-limit
Subgroup: 2.3.5.7.11.13.17
Comma list: 51/50, 56/55, 66/65, 81/80, 105/104
Mapping: [⟨12 19 28 0 8 11 49], ⟨0 0 0 1 1 1 0]]
Optimal tuning (POTE): ~18/17 = 1\12, ~36/35 = 39.777
Optimal GPV sequence: Template:Val list
Badness: 0.023246
19-limit
Subgroup: 2.3.5.7.11.13.17.19
Comma list: 51/50, 56/55, 66/65, 76/75, 81/80, 96/95
Mapping: [⟨12 19 28 0 8 11 49 51], ⟨0 0 0 1 1 1 0 0]]
Optimal tuning (POTE): ~18/17 = 1\12, ~36/35 = 40.165
Optimal GPV sequence: Template:Val list
Badness: 0.018985
Duodecic
Subgroup: 2.3.5.7.11.13
Comma list: 56/55, 81/80, 91/90, 128/125
Mapping: [⟨12 19 28 0 8 78], ⟨0 0 0 1 1 -1]]
Optimal tuning (POTE): ~16/15 = 1\12, ~36/35 = 37.688
Optimal GPV sequence: Template:Val list
Badness: 0.038307
17-limit
Subgroup: 2.3.5.7.11.13.17
Comma list: 51/50, 56/55, 81/80, 91/90, 128/125
Mapping: [⟨12 19 28 0 8 78 49], ⟨0 0 0 1 1 -1 0]]
Optimal tuning (POTE): ~18/17 = 1\12, ~36/35 = 38.097
Optimal GPV sequence: Template:Val list
Badness: 0.027487
19-limit
Subgroup: 2.3.5.7.11.13.17.19
Comma list: 51/50, 56/55, 76/75, 81/80, 91/90, 96/95
Mapping: [⟨12 19 28 0 8 78 49 51], ⟨0 0 0 1 1 -1 0 0]]
Optimal tuning (POTE): ~18/17 = 1\12, ~36/35 = 38.080
Optimal GPV sequence: Template:Val list
Badness: 0.020939
Duodecim
Subgroup: 2.3.5.7.11
Comma list: 36/35, 50/49, 64/63
Mapping: [⟨12 19 28 34 0], ⟨0 0 0 0 1]]
Mapping generators: ~16/15, ~11
Optimal tuning (POTE): ~16/15 = 1\12, ~45/44 = 34.977
Badness: 0.030536
Hours
The hours temperament has a period of 1/24 octave and tempers out the cataharry comma (19683/19600) and the mirwomo comma (33075/32768). The name "hours" was so named for the following reasons – the period is 1/24 octave, and there are 24 hours per a day.
Subgroup: 2.3.5.7
Comma list: 19683/19600, 33075/32768
Mapping: [⟨24 38 0 123], ⟨0 0 1 -1]]
Wedgie: ⟨⟨ 0 24 -24 38 -38 -123 ]]
Mapping generators: ~36/35, ~5
Optimal tuning (POTE): ~36/35 = 1\24, ~5/4 = 384.033
Badness: 0.116091
11-limit
Subgroup: 2.3.5.7.11
Comma list: 243/242, 385/384, 9801/9800
Mapping: [⟨24 38 0 123 83], ⟨0 0 1 -1 0]]
Optimal tuning (POTE): ~36/35 = 1\24, ~5/4 = 384.054
Optimal GPV sequence: Template:Val list
Badness: 0.036248
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 243/242, 351/350, 364/363, 385/384
Mapping: [⟨24 38 0 123 83 33], ⟨0 0 1 -1 0 1]]
Optimal tuning (POTE): ~36/35 = 1\24, ~5/4 = 384.652
Optimal GPV sequence: Template:Val list
Badness: 0.026931
Decades
The decades temperament has a period of 1/36 octave and tempers out the gamelisma (1029/1024) and the stearnsma (118098/117649). The name "decades" was so named for the following reasons – the period is 1/36 octave, and there are 36 decades (ten days) per a year (12 months × 3 decades per a month).
Subgroup: 2.3.5.7
Comma list: 1029/1024, 118098/117649
Mapping: [⟨36 57 0 101], ⟨0 0 1 0]]
Mapping generators: ~49/48, ~5
Wedgie: ⟨⟨ 0 36 0 57 0 -101 ]]
Optimal tuning (POTE): ~49/48 = 1\36, ~5/4 = 384.764
Badness: 0.108016
11-limit
Subgroup: 2.3.5.7.11
Comma list: 540/539, 1029/1024, 4000/3993
Mapping: [⟨36 57 0 101 41], ⟨0 0 1 0 1]]
Optimal tuning (POTE): ~49/48 = 1\36, ~5/4 = 384.150
Optimal GPV sequence: Template:Val list
Badness: 0.043088
Omicronbeta
Subgroup: 2.3.5.7.11.13
Comma list: 225/224, 243/242, 441/440, 4375/4356
Mapping: [⟨72 114 167 202 249 266], ⟨0 0 0 0 0 1]]
Mapping generators: ~100/99, ~13
Optimal tuning (POTE): ~100/99 = 1\72, ~13/8 = 837.814
Badness: 0.029956