11664edo: Difference between revisions
Jump to navigation
Jump to search
m Infobox ET added |
m Improve intro and update the error table |
||
Line 1: | Line 1: | ||
{{Infobox ET}} | {{Infobox ET}} | ||
{{EDO intro|11664}} | |||
11664edo is a very strong 7-limit system, with a lower 7-limit [[Tenney-Euclidean temperament measures #TE simple badness|relative error]] than any division until [[18355edo|18355]]. It is a [[The Riemann zeta function and tuning #Zeta EDO lists|zeta peak edo]] unlike other very strong 7-limit divisions in this size range, which has to do with the fact that it is also very strong in higher limits, being distinctly [[consistent]] through the 27-odd-limit and with a lower 23-limit relative error than any division until [[16808edo|16808]]. Aside from this peculiar double threat property, it is also very composite, since 11664 = 2<sup>3</sup> × 3<sup>6</sup>. Among its divisiors are [[12edo|12]], [[16edo|16]], [[24edo|24]], [[27edo|27]], [[72edo|72]], [[81edo|81]] and [[243edo|243]]. | |||
=== Prime harmonics === | |||
{{Harmonics in equal|11664|prec=5}} |
Revision as of 11:18, 7 January 2023
← 11663edo | 11664edo | 11665edo → |
11664edo is a very strong 7-limit system, with a lower 7-limit relative error than any division until 18355. It is a zeta peak edo unlike other very strong 7-limit divisions in this size range, which has to do with the fact that it is also very strong in higher limits, being distinctly consistent through the 27-odd-limit and with a lower 23-limit relative error than any division until 16808. Aside from this peculiar double threat property, it is also very composite, since 11664 = 23 × 36. Among its divisiors are 12, 16, 24, 27, 72, 81 and 243.
Prime harmonics
Harmonic | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.00000 | -0.00027 | +0.00316 | +0.00125 | +0.01951 | +0.00732 | -0.01714 | +0.01785 | +0.01783 | -0.05045 | +0.02616 |
Relative (%) | +0.0 | -0.3 | +3.1 | +1.2 | +19.0 | +7.1 | -16.7 | +17.3 | +17.3 | -49.0 | +25.4 | |
Steps (reduced) |
11664 (0) |
18487 (6823) |
27083 (3755) |
32745 (9417) |
40351 (5359) |
43162 (8170) |
47676 (1020) |
49548 (2892) |
52763 (6107) |
56663 (10007) |
57786 (11130) |