69edo: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
The '''69 equal division''' or '''69-EDO''', which divides the octave into 69 equal parts of 17.391 [[cent]]s each | The '''69 equal division''' or '''69-EDO''', which divides the octave into 69 equal parts of 17.391 [[cent]]s each. Nice. | ||
== Theory == | |||
69edo has been called "the love-child of [[23edo]] and [[quarter-comma meantone]]". As a meantone system, it is on the flat side, with a fifth of 695.652 cents. Such a fifth is closer to 2/7-comma meantone than 1/4-comma, and is nearly identical to that of "Synch-Meantone", or Wilson's equal beating meantone, wherein the perfect fifth and the major third beat at equal rates. Therefore 69edo can be treated as a closed system of Synch-Meantone for most purposes. | |||
{{primes in edo|69}} | {{primes in edo|69}} | ||
In the [[7-limit]] it is a [[mohajira]] system, tempering out 6144/6125, but not a septimal meantone system, as [[126/125]] maps to one step. It also [[support]]s the 12&69 temperament tempering out 3125/3087 along with [[81/80]]. In the 11-limit it tempers out [[99/98]], and supports the 31&69 variant of mohajira, identical to the standard 11-limit mohajira in [[31edo|31EDO]] but not in 69. | In the [[7-limit]] it is a [[mohajira]] system, tempering out 6144/6125, but not a septimal meantone system, as [[126/125]] maps to one step. It also [[support]]s the 12&69 temperament tempering out 3125/3087 along with [[81/80]]. In the 11-limit it tempers out [[99/98]], and supports the 31&69 variant of mohajira, identical to the standard 11-limit mohajira in [[31edo|31EDO]] but not in 69. | ||
{| class="wikitable collapsible mw-collapsed center-1 right-3" | |||
== Regular temperament properties == | |||
{| class="wikitable" | |||
|+ | |||
!Subgroup | |||
!Comma list | |||
!Mapping | |||
!Optimal 8ve stretch | |||
(¢) | |||
|- | |||
|2.3 | |||
|[-109, 69⟩ | |||
|[⟨69 109]] | |||
|1.99 | |||
|- | |||
|2.3.5 | |||
|81/80, [-41, 1, 17⟩, [-37, -3, 18⟩, [-33, -7, 19⟩ | |||
|[⟨69 109 160]] | |||
|1.86 | |||
|- | |||
|2.3.5.7 | |||
|81/80, 3125/3087, 5625/5488, 6144/6125, 17280/16807, 17496/16807 | |||
|[⟨69 109 160 194]] | |||
|0.94 | |||
|- | |||
|2.3.5.7.11 | |||
|81/80, 99/98, 441/440, 625/616, 864/847, 1344/1331, 2420/2401, 2560/2541 | |||
|[⟨69 109 160 194 239]] | |||
|0.44 | |||
|} | |||
== Table of intervals == | |||
{| class="wikitable mw-collapsible mw-collapsed collapsible center-1 right-3" | |||
|- | |- | ||
!Degree | !Degree | ||
Line 21: | Line 56: | ||
|17.391 | |17.391 | ||
|[[100/99]] | |[[100/99]] | ||
| -0.008 | | -0.008 | ||
|- | |- | ||
|2 | |2 | ||
Line 27: | Line 62: | ||
|34.783 | |34.783 | ||
|[[50/49]], [[101/99]] | |[[50/49]], [[101/99]] | ||
| -0.193, 0.157 | | -0.193, 0.157 | ||
|- | |- | ||
|3 | |3 | ||
Line 39: | Line 74: | ||
|69.565 | |69.565 | ||
|[[76/73]] | |[[76/73]] | ||
| -0.158 | | -0.158 | ||
|- | |- | ||
|5 | |5 | ||
Line 45: | Line 80: | ||
|86.957 | |86.957 | ||
|[[20/19]] | |[[20/19]] | ||
| -1.844 | | -1.844 | ||
|- | |- | ||
|6 | |6 | ||
Line 51: | Line 86: | ||
|104.348 | |104.348 | ||
|[[17/16]] | |[[17/16]] | ||
| -0.608 | | -0.608 | ||
|- | |- | ||
|7 | |7 | ||
Line 69: | Line 104: | ||
|156.522 | |156.522 | ||
|[[23/21]] | |[[23/21]] | ||
| -0.972 | | -0.972 | ||
|- | |- | ||
|10 | |10 | ||
Line 81: | Line 116: | ||
|191.304 | |191.304 | ||
|[[19/17]] | |[[19/17]] | ||
| -1.253 | | -1.253 | ||
|- | |- | ||
|12 | |12 | ||
Line 93: | Line 128: | ||
|226.087 | |226.087 | ||
|[[8/7]] | |[[8/7]] | ||
| -5.087 | | -5.087 | ||
|- | |- | ||
|14 | |14 | ||
Line 105: | Line 140: | ||
|260.870 | |260.870 | ||
|[[7/6]], [[29/25]] | |[[7/6]], [[29/25]] | ||
| -6.001, 3.920 | | -6.001, 3.920 | ||
|- | |- | ||
|16 | |16 | ||
Line 123: | Line 158: | ||
|313.043 | |313.043 | ||
|[[6/5]] | |[[6/5]] | ||
| -2.598 | | -2.598 | ||
|- | |- | ||
|19 | |19 | ||
Line 129: | Line 164: | ||
|330.435 | |330.435 | ||
|[[23/19]] | |[[23/19]] | ||
| -0.327 | | -0.327 | ||
|- | |- | ||
|20 | |20 | ||
Line 141: | Line 176: | ||
|365.217 | |365.217 | ||
|[[21/17]] | |[[21/17]] | ||
| -0.608 | | -0.608 | ||
|- | |- | ||
|22 | |22 | ||
Line 147: | Line 182: | ||
|382.609 | |382.609 | ||
|[[5/4]] | |[[5/4]] | ||
| -3.705 | | -3.705 | ||
|- | |- | ||
|23 | |23 | ||
Line 153: | Line 188: | ||
|400.000 | |400.000 | ||
|[[29/23]], [[34/27]] | |[[29/23]], [[34/27]] | ||
| -1.303, 0.910 | | -1.303, 0.910 | ||
|- | |- | ||
|24 | |24 | ||
Line 159: | Line 194: | ||
|417.391 | |417.391 | ||
|[[14/11]] | |[[14/11]] | ||
| -0.117 | | -0.117 | ||
|- | |- | ||
|25 | |25 | ||
Line 165: | Line 200: | ||
|434.783 | |434.783 | ||
|[[9/7]] | |[[9/7]] | ||
| -0.301 | | -0.301 | ||
|- | |- | ||
|26 | |26 | ||
Line 171: | Line 206: | ||
|452.174 | |452.174 | ||
|[[13/10]] | |[[13/10]] | ||
| -2.040 | | -2.040 | ||
|- | |- | ||
|27 | |27 | ||
Line 177: | Line 212: | ||
|469.565 | |469.565 | ||
|[[21/16]] | |[[21/16]] | ||
| -1.216 | | -1.216 | ||
|- | |- | ||
|28 | |28 | ||
Line 183: | Line 218: | ||
|486.957 | |486.957 | ||
|[[53/40]] | |[[53/40]] | ||
| -0.234 | | -0.234 | ||
|- | |- | ||
|29 | |29 | ||
Line 195: | Line 230: | ||
|521.739 | |521.739 | ||
|[[23/17]] | |[[23/17]] | ||
| -1.580 | | -1.580 | ||
|- | |- | ||
|31 | |31 | ||
Line 213: | Line 248: | ||
|573.913 | |573.913 | ||
|[[7/5]], [[25/18]] | |[[7/5]], [[25/18]] | ||
| -8.600, 5.196 | | -8.600, 5.196 | ||
|- | |- | ||
|34 | |34 | ||
Line 219: | Line 254: | ||
|591.304 | |591.304 | ||
|[[31/22]] | |[[31/22]] | ||
| -2.413 | | -2.413 | ||
|- | |- | ||
|35 | |35 | ||
Line 225: | Line 260: | ||
|608.696 | |608.696 | ||
|[[10/7]], [[27/19]] | |[[10/7]], [[27/19]] | ||
| -8.792, 0.344 | | -8.792, 0.344 | ||
|- | |- | ||
|36 | |36 | ||
Line 255: | Line 290: | ||
|695.652 | |695.652 | ||
|[[3/2]] | |[[3/2]] | ||
| -6.303 | | -6.303 | ||
|- | |- | ||
|41 | |41 | ||
Line 273: | Line 308: | ||
|747.826 | |747.826 | ||
|[[17/11]] | |[[17/11]] | ||
| -5.811 | | -5.811 | ||
|- | |- | ||
|44 | |44 | ||
Line 291: | Line 326: | ||
|800.000 | |800.000 | ||
|[[27/17]] | |[[27/17]] | ||
| -0.910 | | -0.910 | ||
|- | |- | ||
|47 | |47 | ||
Line 309: | Line 344: | ||
|852.174 | |852.174 | ||
|[[18/11]] | |[[18/11]] | ||
| -0.418 | | -0.418 | ||
|- | |- | ||
|50 | |50 | ||
Line 327: | Line 362: | ||
|904.348 | |904.348 | ||
|[[27/16]] | |[[27/16]] | ||
| -1.517 | | -1.517 | ||
|- | |- | ||
|53 | |53 | ||
Line 345: | Line 380: | ||
|956.522 | |956.522 | ||
|[[40/23]] | |[[40/23]] | ||
| -1.518 | | -1.518 | ||
|- | |- | ||
|56 | |56 | ||
Line 357: | Line 392: | ||
|991.304 | |991.304 | ||
|[[16/9]] | |[[16/9]] | ||
| -4.786 | | -4.786 | ||
|- | |- | ||
|58 | |58 | ||
Line 369: | Line 404: | ||
|1026.087 | |1026.087 | ||
|[[38/21]] | |[[38/21]] | ||
| -0.645 | | -0.645 | ||
|- | |- | ||
|60 | |60 | ||
Line 381: | Line 416: | ||
|1060.870 | |1060.870 | ||
|[[24/13]] | |[[24/13]] | ||
| -0.558 | | -0.558 | ||
|- | |- | ||
|62 | |62 | ||
Line 387: | Line 422: | ||
|1078.261 | |1078.261 | ||
|[[28/15]] | |[[28/15]] | ||
| -2.296 | | -2.296 | ||
|- | |- | ||
|63 | |63 | ||
Line 411: | Line 446: | ||
|1147.826 | |1147.826 | ||
|[[33/17]] | |[[33/17]] | ||
| -0.491 | | -0.491 | ||
|- | |- | ||
|67 | |67 | ||
Line 417: | Line 452: | ||
|1165.217 | |1165.217 | ||
|[[49/25]] | |[[49/25]] | ||
| -0.193 | | -0.193 | ||
|- | |- | ||
|68 | |68 |
Revision as of 08:32, 4 March 2022
The 69 equal division or 69-EDO, which divides the octave into 69 equal parts of 17.391 cents each. Nice.
Theory
69edo has been called "the love-child of 23edo and quarter-comma meantone". As a meantone system, it is on the flat side, with a fifth of 695.652 cents. Such a fifth is closer to 2/7-comma meantone than 1/4-comma, and is nearly identical to that of "Synch-Meantone", or Wilson's equal beating meantone, wherein the perfect fifth and the major third beat at equal rates. Therefore 69edo can be treated as a closed system of Synch-Meantone for most purposes. Script error: No such module "primes_in_edo".
In the 7-limit it is a mohajira system, tempering out 6144/6125, but not a septimal meantone system, as 126/125 maps to one step. It also supports the 12&69 temperament tempering out 3125/3087 along with 81/80. In the 11-limit it tempers out 99/98, and supports the 31&69 variant of mohajira, identical to the standard 11-limit mohajira in 31EDO but not in 69.
Regular temperament properties
Subgroup | Comma list | Mapping | Optimal 8ve stretch
(¢) |
---|---|---|---|
2.3 | [-109, 69⟩ | [⟨69 109]] | 1.99 |
2.3.5 | 81/80, [-41, 1, 17⟩, [-37, -3, 18⟩, [-33, -7, 19⟩ | [⟨69 109 160]] | 1.86 |
2.3.5.7 | 81/80, 3125/3087, 5625/5488, 6144/6125, 17280/16807, 17496/16807 | [⟨69 109 160 194]] | 0.94 |
2.3.5.7.11 | 81/80, 99/98, 441/440, 625/616, 864/847, 1344/1331, 2420/2401, 2560/2541 | [⟨69 109 160 194 239]] | 0.44 |
Table of intervals
Degree | Name | Cents | Approximate Ratios* | Error (abs, ¢) |
---|---|---|---|---|
0 | Natural Unison, 1 | 0.000 | 1/1 | 0.000 |
1 | Ptolemy's comma | 17.391 | 100/99 | -0.008 |
2 | Jubilisma, lesser septimal sixth tone | 34.783 | 50/49, 101/99 | -0.193, 0.157 |
3 | lesser septendecimal quartertone, _____ | 52.174 | 34/33, 101/98 | 0.491, -0.028 |
4 | _____ | 69.565 | 76/73 | -0.158 |
5 | Small undevicesimal semitone | 86.957 | 20/19 | -1.844 |
6 | Large septendecimal semitone | 104.348 | 17/16 | -0.608 |
7 | Septimal diatonic semitone | 121.739 | 15/14 | 2.296 |
8 | Tridecimal neutral second | 139.130 | 13/12 | 0.558 |
9 | Vicesimotertial neutral second | 156.522 | 23/21 | -0.972 |
10 | Undevicesimal large neutral second, undevicesimal whole tone | 173.913 | 21/19 | 0.645 |
11 | Quasi-meantone | 191.304 | 19/17 | -1.253 |
12 | Whole tone | 208.696 | 9/8 | 4.786 |
13 | Septimal whole tone | 226.087 | 8/7 | -5.087 |
14 | Vicesimotertial semifourth | 243.478 | 23/20 | 1.518 |
15 | Subminor third, undetricesimal subminor third | 260.870 | 7/6, 29/25 | -6.001, 3.920 |
16 | Vicesimotertial subminor third | 278.261 | 27/23 | 0.670 |
17 | Pythagorean minor third | 295.652 | 32/27 | 1.517 |
18 | Classic minor third | 313.043 | 6/5 | -2.598 |
19 | Vicesimotertial supraminor third | 330.435 | 23/19 | -0.327 |
20 | Undecimal neutral third | 347.826 | 11/9 | 0.418 |
21 | Septendecimal submajor third | 365.217 | 21/17 | -0.608 |
22 | Classic major third | 382.609 | 5/4 | -3.705 |
23 | Undetricesimal major third, Septendecimal major third | 400.000 | 29/23, 34/27 | -1.303, 0.910 |
24 | Undecimal major third | 417.391 | 14/11 | -0.117 |
25 | Supermajor third | 434.783 | 9/7 | -0.301 |
26 | Barbados third | 452.174 | 13/10 | -2.040 |
27 | Septimal sub-fourth | 469.565 | 21/16 | -1.216 |
28 | _____ | 486.957 | 53/40 | -0.234 |
29 | Just perfect fourth | 504.348 | 4/3 | 6.303 |
30 | Vicesimotertial acute fourth | 521.739 | 23/17 | -1.580 |
31 | Undecimal augmented fourth | 539.130 | 15/11 | 2.180 |
32 | Undecimal superfourth, undetricesimal superfourth | 556.522 | 11/8, 29/21 | 5.204, -2.275 |
33 | Narrow tritone, classic augmented fourth | 573.913 | 7/5, 25/18 | -8.600, 5.196 |
34 | _____ | 591.304 | 31/22 | -2.413 |
35 | High tritone, undevicesimal tritone | 608.696 | 10/7, 27/19 | -8.792, 0.344 |
36 | _____ | 626.087 | 33/23 | 1.088 |
37 | Undetricesimal tritone | 643.478 | 29/20 | 0.215 |
38 | Undevicesimal diminished fifth, undecimal diminished fifth | 660.870 | 19/13, 22/15 | 3.884, -2.180 |
39 | Vicesimotertial grave fifth, _____ | 678.261 | 34/23, 37/25 | 1.580, -0.456 |
40 | Just perfect fifth | 695.652 | 3/2 | -6.303 |
41 | _____ | 713.043 | 80/53 | 0.234 |
42 | Super-fifth, undetricesimal super-fifth | 730.435 | 32/21, 29/19 | 1.216, -1.630 |
43 | Septendecimal subminor sixth | 747.826 | 17/11 | -5.811 |
44 | Subminor sixth | 765.217 | 14/9 | 0.301 |
45 | Undecimal minor sixth | 782.609 | 11/7 | 0.117 |
46 | Septendecimal subminor sixth | 800.000 | 27/17 | -0.910 |
47 | Classic minor sixth | 817.391 | 8/5 | 3.705 |
48 | Septendecimal supraminor sixth | 834.783 | 34/21 | 0.608 |
49 | Undecimal neutral sixth | 852.174 | 18/11 | -0.418 |
50 | Vicesimotertial submajor sixth | 869.565 | 38/23 | 0.327 |
51 | Classic major sixth | 886.957 | 5/3 | 2.598 |
52 | Pythagorean major sixth | 904.348 | 27/16 | -1.517 |
53 | Septendecimal major sixth, undetricesimal major sixth | 921.739 | 17/10, 29/17 | 3.097, -2.883 |
54 | Supermajor sixth, undetricesimal supermajor sixth | 939.130 | 12/7, 50/29 | 6.001, -3.920 |
55 | Vicesimotertial supermajor sixth | 956.522 | 40/23 | -1.518 |
56 | Harmonic seventh | 973.913 | 7/4 | 5.087 |
57 | Pythagorean minor seventh | 991.304 | 16/9 | -4.786 |
58 | Quasi-meantone minor seventh | 1008.696 | 34/19 | 1.253 |
59 | Minor neutral undevicesimal seventh | 1026.087 | 38/21 | -0.645 |
60 | Vicesimotertial neutral seventh | 1043.478 | 42/23 | 0.972 |
61 | Tridecimal neutral seventh | 1060.870 | 24/13 | -0.558 |
62 | Septimal diatonic major seventh | 1078.261 | 28/15 | -2.296 |
63 | Small septendecimal major seventh | 1095.652 | 32/17 | 0.608 |
64 | Small undevicesimal semitone | 1113.043 | 20/19 | 1.844 |
65 | _____ | 1130.435 | 73/38 | 0.158 |
66 | Septendecimal supermajor seventh | 1147.826 | 33/17 | -0.491 |
67 | _____ | 1165.217 | 49/25 | -0.193 |
68 | _____ | 1182.609 | 99/50 | 0.008 |
69 | Octave, 8 | 1200.000 | 2/1 | 0.000 |
*some simpler ratios listed
Scales
- Mavka[11] - 66676667667
- MeantoneMajor[7] - 11 11 7 11 11 11 7
- MeantoneChromatic[12] - 747474774747
Music
- Hypergiant Sakura by Eliora Ben-Gurion