77edo: Difference between revisions
Contribution (talk | contribs) |
Cleanup |
||
Line 1: | Line 1: | ||
'''77 equal temperament''', '''77-tET''' or '''77-EDO''' divides the octave into 77 steps of size 15.5844 [[cent | '''77 equal temperament''', '''77-tET''' or '''77-EDO''' divides the octave into 77 steps of size 15.5844 [[cent]]s each. | ||
== Theory == | == Theory == | ||
With fifths less than a cent flat, major thirds a bit over three cents sharp and [[7/4 | With fifths less than a cent flat, major thirds a bit over three cents sharp and [[7/4]]'s less flat than that, 77edo represents an excellent tuning choice for both [[valentine]], the 31&46 temperament, and [[starling]], the [[126/125]] [[planar temperament]], giving the [[optimal patent val]] for [[11-limit]] valentine and its [[13-limit]] extensions dwynwen and valentino, as well as 11-limit starling and [[oxpecker]] temperaments. It also gives the optimal patent val for [[grackle]] and various members of the [[unicorn family]], with a [[generator]] of 4\77 instead of the 5\77 (which gives valentine). These are 7-limit [[Unicorn family #Alicorn|alicorn]] and 11- and 13-limit [[Unicorn family #Camahueto|camahueto]]. | ||
77et tempers out [[32805/32768]] in the [[5-limit]], [[126/125]], [[1029/1024]] and [[6144/6125]] in the 7-limit, [[121/120]], [[176/175]], [[385/384]] and [[441/440]] in the 11-limit, and [[196/195]], [[351/350]], [[352/351]], [[676/675]] and [[729/728]] in the 13-limit. | 77et tempers out [[32805/32768]] in the [[5-limit]], [[126/125]], [[1029/1024]] and [[6144/6125]] in the 7-limit, [[121/120]], [[176/175]], [[385/384]] and [[441/440]] in the 11-limit, and [[196/195]], [[351/350]], [[352/351]], [[676/675]] and [[729/728]] in the 13-limit. | ||
77edo is an excellent EDO for [[Carlos Alpha]] scale, since the difference between 5 steps of 77edo and 1 step of Carlos Alpha is only -0.042912 cents. | |||
=== Prime harmonics === | |||
{{Primes in edo|77}} | |||
== Intervals == | == Intervals == | ||
Line 330: | Line 332: | ||
|} | |} | ||
== | == Regular temperament properties == | ||
The following table shows [[TE temperament measures]] (RMS normalized by the rank) of 77et. | |||
{| class="wikitable center- | {| class="wikitable center-4 center-5 center-6" | ||
! | ! rowspan="2" | Subgroup | ||
! | ! rowspan="2" | [[Comma list]] | ||
! | ! rowspan="2" | [[Mapping]] | ||
! | ! rowspan="2" | Optimal<br>8ve stretch (¢) | ||
! | ! colspan="2" | Tuning error | ||
|- | |- | ||
! | ! [[TE error|Absolute]] (¢) | ||
! [[TE simple badness|Relative]] (%) | |||
| | |||
|- | |- | ||
| 2.3 | |||
| {{monzo| -122 77 }} | |||
| | | [{{val| 77 122 }}] | ||
| +0.207 | |||
| - | | 0.207 | ||
| | | 1.33 | ||
| | |||
| + | |||
| | |||
| | |||
|- | |- | ||
| 2.3.5 | |||
| | | 32805/32768, 1594323/1562500 | ||
| [{{val| 77 122 179 }}] | |||
| -0.336 | | -0.336 | ||
| 0.785 | |||
| 5.04 | |||
|- | |||
| 2.3.5.7 | |||
| 126/125, 1029/1024, 10976/10935 | |||
| [{{val| 77 122 179 216 }}] | |||
| -0.021 | | -0.021 | ||
| 0.872 | |||
| 5.59 | |||
|- | |||
| 2.3.5.7.11 | |||
| 121/120, 126/125, 176/175, 10976/10935 | |||
| [{{val| 77 122 179 216 266 }}] | |||
| +0.322 | | +0.322 | ||
| 1.039 | |||
| 6.66 | |||
|- | |||
| 2.3.5.7.11.13 | |||
| 121/120, 126/125, 176/175, 196/195, 676/675 | |||
| [{{val| 77 122 179 216 266 285 }}] | |||
| +0.222 | | +0.222 | ||
| 0.974 | | 0.974 | ||
| 6.25 | | 6.25 | ||
|} | |} | ||
== | === Rank-2 temperaments === | ||
{| class="wikitable center-all left-3" | {| class="wikitable center-all left-3" | ||
|- | |- | ||
Line 428: | Line 401: | ||
| 1 | | 1 | ||
| 4\77 | | 4\77 | ||
| [[Unicorn]]/alicorn/camahueto/qilin | | [[Unicorn]] / alicorn / camahueto / qilin | ||
|- | |- | ||
| 1 | | 1 | ||
Line 516: | Line 489: | ||
| 1 | | 1 | ||
| 32\77 | | 32\77 | ||
| [[Helmholtz]]/[[grackle]] | | [[Helmholtz]] / [[grackle]] | ||
|- | |- | ||
| 1 | | 1 | ||
Line 568: | Line 541: | ||
== Music == | == Music == | ||
* ''[http://micro.soonlabel.com/gene_ward_smith/Others/Taylor/star_1-GrimaldiA+Bmod.mp3 Star 1-GrimaldiA+Bmod]'' by [[Joel Grant Taylor]] | * ''[http://micro.soonlabel.com/gene_ward_smith/Others/Taylor/star_1-GrimaldiA+Bmod.mp3 Star 1-GrimaldiA+Bmod]'' by [[Joel Grant Taylor]] | ||
* ''[http://micro.soonlabel.com/star/20120830-77et-star.mp3 77et Star]'' by [[Chris Vaisvil]] | * ''[http://micro.soonlabel.com/star/20120830-77et-star.mp3 77et Star]'' by [[Chris Vaisvil]] | ||
Line 574: | Line 546: | ||
[[Category:Equal divisions of the octave]] | [[Category:Equal divisions of the octave]] | ||
[[Category: | [[Category:Listen]] | ||
[[Category: | [[Category:Star]] | ||
[[Category: | [[Category:Starling]] | ||
[[Category: | [[Category:Valentine]] |
Revision as of 18:38, 26 December 2021
77 equal temperament, 77-tET or 77-EDO divides the octave into 77 steps of size 15.5844 cents each.
Theory
With fifths less than a cent flat, major thirds a bit over three cents sharp and 7/4's less flat than that, 77edo represents an excellent tuning choice for both valentine, the 31&46 temperament, and starling, the 126/125 planar temperament, giving the optimal patent val for 11-limit valentine and its 13-limit extensions dwynwen and valentino, as well as 11-limit starling and oxpecker temperaments. It also gives the optimal patent val for grackle and various members of the unicorn family, with a generator of 4\77 instead of the 5\77 (which gives valentine). These are 7-limit alicorn and 11- and 13-limit camahueto.
77et tempers out 32805/32768 in the 5-limit, 126/125, 1029/1024 and 6144/6125 in the 7-limit, 121/120, 176/175, 385/384 and 441/440 in the 11-limit, and 196/195, 351/350, 352/351, 676/675 and 729/728 in the 13-limit.
77edo is an excellent EDO for Carlos Alpha scale, since the difference between 5 steps of 77edo and 1 step of Carlos Alpha is only -0.042912 cents.
Prime harmonics
Script error: No such module "primes_in_edo".
Intervals
Degree | Cents | Approximate Ratios in the 13-limit |
---|---|---|
0 | 0.000 | 1/1 |
1 | 15.584 | 81/80, 99/98 |
2 | 31.169 | 64/63, 49/48 |
3 | 46.753 | 33/32, 36/35 |
4 | 62.338 | 28/27, 26/25 |
5 | 77.922 | 21/20, 25/24 |
6 | 93.506 | 135/128 |
7 | 109.091 | 16/15 |
8 | 124.675 | 15/14 |
9 | 140.260 | 13/12 |
10 | 155.844 | 12/11, 11/10 |
11 | 171.429 | 72/65 |
12 | 187.013 | 10/9 |
13 | 202.597 | 9/8 |
14 | 218.182 | 256/225 |
15 | 233.766 | 8/7 |
16 | 249.351 | 15/13 |
17 | 264.935 | 7/6 |
18 | 280.519 | 33/28 |
19 | 296.104 | 32/27, 13/11 |
20 | 311.688 | 6/5 |
21 | 327.273 | 98/81 |
22 | 342.857 | 11/9, 39/32 |
23 | 358.442 | 16/13 |
24 | 374.026 | 56/45, 26/21 |
25 | 389.610 | 5/4 |
26 | 405.195 | 33/26, 81/64 |
27 | 420.779 | 14/11, 32/25 |
28 | 436.364 | 9/7 |
29 | 451.948 | 13/10 |
30 | 467.532 | 21/16 |
31 | 483.117 | 120/91 |
32 | 498.701 | 4/3 |
33 | 514.286 | 27/20 |
34 | 529.870 | 49/36 |
35 | 545.455 | 11/8, 15/11 |
36 | 561.039 | 18/13 |
37 | 576.623 | 7/5 |
38 | 592.208 | 45/32 |
39 | 607.792 | 64/45 |
40 | 623.377 | 10/7 |
41 | 638.961 | 13/9 |
42 | 654.545 | 16/11, 22/15 |
43 | 670.130 | 72/49 |
44 | 685.714 | 40/27 |
45 | 701.299 | 3/2 |
46 | 716.883 | 91/60 |
47 | 732.468 | 32/21 |
48 | 748.052 | 20/13 |
49 | 763.636 | 14/9 |
50 | 779.221 | 11/7, 25/16 |
51 | 794.805 | 52/33, 128/81 |
52 | 810.390 | 8/5 |
53 | 825.974 | 45/28, 21/13 |
54 | 841.558 | 13/8 |
55 | 857.143 | 18/11, 64/39 |
56 | 872.727 | 81/49 |
57 | 888.312 | 5/3 |
58 | 903.896 | 27/16, 22/13 |
59 | 919.481 | 56/33 |
60 | 935.065 | 12/7 |
61 | 950.649 | 26/15 |
62 | 966.234 | 7/4 |
63 | 981.818 | 225/128 |
64 | 997.403 | 16/9 |
65 | 1012.987 | 9/5 |
66 | 1028.571 | 65/36 |
67 | 1044.156 | 11/6, 20/11 |
68 | 1059.740 | 24/13 |
69 | 1075.325 | 28/15 |
70 | 1090.909 | 15/8 |
71 | 1106.494 | 256/135 |
72 | 1122.078 | 40/21, 48/25 |
73 | 1137.662 | 27/14, 25/13 |
74 | 1153.247 | 64/33, 35/18 |
75 | 1168.831 | 63/32, 96/49 |
76 | 1184.416 | 160/81, 196/99 |
77 | 1200.000 | 2/1 |
Regular temperament properties
The following table shows TE temperament measures (RMS normalized by the rank) of 77et.
Subgroup | Comma list | Mapping | Optimal 8ve stretch (¢) |
Tuning error | |
---|---|---|---|---|---|
Absolute (¢) | Relative (%) | ||||
2.3 | [-122 77⟩ | [⟨77 122]] | +0.207 | 0.207 | 1.33 |
2.3.5 | 32805/32768, 1594323/1562500 | [⟨77 122 179]] | -0.336 | 0.785 | 5.04 |
2.3.5.7 | 126/125, 1029/1024, 10976/10935 | [⟨77 122 179 216]] | -0.021 | 0.872 | 5.59 |
2.3.5.7.11 | 121/120, 126/125, 176/175, 10976/10935 | [⟨77 122 179 216 266]] | +0.322 | 1.039 | 6.66 |
2.3.5.7.11.13 | 121/120, 126/125, 176/175, 196/195, 676/675 | [⟨77 122 179 216 266 285]] | +0.222 | 0.974 | 6.25 |
Rank-2 temperaments
Periods per Octave |
Generator | Temperaments |
---|---|---|
1 | 1\77 | |
1 | 2\77 | |
1 | 3\77 | |
1 | 4\77 | Unicorn / alicorn / camahueto / qilin |
1 | 5\77 | Valentine |
1 | 6\77 | |
1 | 8\77 | |
1 | 9\77 | Tsaharuk |
1 | 10\77 | |
1 | 12\77 | |
1 | 13\77 | |
1 | 15\77 | Guiron |
1 | 16\77 | Hemischis |
1 | 17\77 | |
1 | 18\77 | |
1 | 19\77 | |
1 | 20\77 | Oolong |
1 | 23\77 | Restles |
1 | 24\77 | |
1 | 25\77 | |
1 | 26\77 | |
1 | 27\77 | |
1 | 29\77 | |
1 | 30\77 | |
1 | 31\77 | Hemiseven |
1 | 32\77 | Helmholtz / grackle |
1 | 34\77 | Mabila |
1 | 36\77 | |
1 | 37\77 | |
1 | 38\77 | |
7 | 1\77 | Absurdity |
7 | 2\77 | |
7 | 3\77 | |
7 | 4\77 | |
7 | 5\77 | |
11 | 1\77 | Hendecatonic |
11 | 2\77 | |
11 | 3\77 |
Music
- Star 1-GrimaldiA+Bmod by Joel Grant Taylor
- 77et Star by Chris Vaisvil
- A Seed Planted by Jake Freivald, in an organ version of Claudi Meneghin.