3L 2s (3/2-equivalent): Difference between revisions
m Fixed 8edf being described as an "equal temperament" instead of an equal tuning |
Major additions all-round. |
||
Line 8: | Line 8: | ||
| Pattern = LLsLs | | Pattern = LLsLs | ||
}} | }} | ||
'''3L 2s<3/2>''' (sometimes called '''uranian'''), is a fifth-repeating MOS scale. The notation "<3/2>" means the period of the MOS is 3/2, disambiguating it from octave-repeating [[3L 2s]]. | '''3L 2s<3/2>''' (sometimes called '''uranian'''), is a fifth-repeating MOS scale. The notation "<3/2>" means the period of the MOS is 3/2, disambiguating it from octave-repeating [[3L 2s]]. The name of the period interval is called the '''sesquitave''' (by analogy to the [[tritave]]). | ||
The generator range is 234 to 280.8 cents, placing it in between the [[9/8|diatonic major second]] and the [[6/5|diatonic minor third]], usually representing a subminor third of some type (like [[7/6]]). The bright (chroma-positive) generator is, however, its fifth complement (468 to 421.2 cents). | |||
Because uranian is a fifth-repeating scale, each tone has a 3/2 perfect fifth above it. The scale has three major chords and two minor chords, all voiced so that the third of the triad is an octave higher, a tenth. Uranian also has two harmonic 7th chords. | Because uranian is a fifth-repeating scale, each tone has a 3/2 perfect fifth above it. The scale has three major chords and two minor chords, all voiced so that the third of the triad is an octave higher, a tenth. Uranian also has two harmonic 7th chords. | ||
Line 14: | Line 16: | ||
[[Basic]] uranian is in [[8edf]], which is a very good fifth-based equal tuning similar to [[88cET]]. | [[Basic]] uranian is in [[8edf]], which is a very good fifth-based equal tuning similar to [[88cET]]. | ||
== | ==Notation== | ||
There are 2 main ways to notate the uranian scale. One method uses a simple sesquitave (fifth) repeating notation consisting of 5 naturals (A-E). Given that 1-7/4-5/2 is fifth-equivalent to a tone cluster of 1-10/9-7/6, it may be more convenient to notate uranian scales as repeating at the double sesquitave (major ninth), however it does make navigating the [[Generator|genchain]] harder. This way, 7/4 is its own pitch class, distinct from 7/6. Notating this way produces a major ninth which is the Aeolian mode of Annapolis[6L 4s]. Since there are exactly 10 naturals in double sesquitave notation, Greek numerals 1-10 may be used. | |||
{| class="wikitable" | {| class="wikitable" | ||
|+ | |+ | ||
! | ! colspan="2" |Notation | ||
!Supersoft | |||
!Soft | |||
!Semisoft | |||
!Basic | |||
!Semihard | |||
!Hard | |||
!Superhard | |||
|- | |||
!Sesq | |||
!D-Sesq | |||
!18edf | !18edf | ||
!13edf | !13edf | ||
Line 60: | Line 39: | ||
!14edf | !14edf | ||
|- | |- | ||
| | |A# | ||
|Α# | |||
|1\18 | |1\18 | ||
38.9975 | 38.9975 | ||
Line 76: | Line 56: | ||
150.4189 | 150.4189 | ||
|- | |- | ||
| | |Bb | ||
|Βb | |||
|3\18 | |3\18 | ||
116.9925 | 116.9925 | ||
Line 90: | Line 71: | ||
50.1396 | 50.1396 | ||
|- | |- | ||
| | |B | ||
|Β | |||
|4\18 | |4\18 | ||
155.99 | 155.99 | ||
Line 106: | Line 88: | ||
200.5586 | 200.5586 | ||
|- | |- | ||
| | |B# | ||
|Β# | |||
|5\18 | |5\18 | ||
194.9875 | 194.9875 | ||
Line 122: | Line 105: | ||
350.9775 | 350.9775 | ||
|- | |- | ||
! | !Cb | ||
!Γb | |||
!7\18 | !7\18 | ||
272.9825 | 272.9825 | ||
Line 136: | Line 120: | ||
250.6982 | 250.6982 | ||
|- | |- | ||
| | |C | ||
|Γ | |||
|8\18 | |8\18 | ||
311.98 | 311.98 | ||
Line 152: | Line 137: | ||
401.1171 | 401.1171 | ||
|- | |- | ||
| | |C# | ||
|Γ# | |||
|9\18 | |9\18 | ||
350.9775 | 350.9775 | ||
Line 168: | Line 154: | ||
551.536 | 551.536 | ||
|- | |- | ||
| | |Db | ||
|Δb | |||
|10\18 | |10\18 | ||
389.975 | 389.975 | ||
Line 182: | Line 169: | ||
300.8379 | 300.8379 | ||
|- | |- | ||
| | |D | ||
|Δ | |||
|11\18 | |11\18 | ||
428.9725 | 428.9725 | ||
Line 198: | Line 186: | ||
451.2568 | 451.2568 | ||
|- | |- | ||
| | |D# | ||
|Δ# | |||
|12\18 | |12\18 | ||
467.97 | 467.97 | ||
Line 214: | Line 203: | ||
601.6757 | 601.6757 | ||
|- | |- | ||
| | |Eb | ||
|Εb | |||
|13\18 | |13\18 | ||
506.9675 | 506.9675 | ||
Line 228: | Line 218: | ||
501.3964 | 501.3964 | ||
|- | |- | ||
| | |E | ||
|Ε | |||
|15\18 | |15\18 | ||
584.9625 | 584.9625 | ||
Line 244: | Line 235: | ||
651.8154 | 651.8154 | ||
|- | |- | ||
| | |E# | ||
|Ε# | |||
|16\18 | |16\18 | ||
622.96 | 622.96 | ||
Line 260: | Line 252: | ||
802.2343 | 802.2343 | ||
|- | |- | ||
| | |Ab | ||
|Ϛb/Ϝb | |||
|17\18 | |17\18 | ||
662.9575 | 662.9575 | ||
Line 274: | Line 267: | ||
551.636 | 551.636 | ||
|- | |- | ||
! | !A | ||
!Ϛ/Ϝ | |||
! colspan="7" |701.955 | ! colspan="7" |701.955 | ||
|- | |- | ||
| | |A# | ||
|Ϛ#/Ϝ# | |||
|19\18 | |19\18 | ||
740.9525 | 740.9525 | ||
Line 293: | Line 288: | ||
852.3739 | 852.3739 | ||
|- | |- | ||
| | |Bb | ||
|Ζb | |||
|21\18 | |21\18 | ||
818.9475 | 818.9475 | ||
Line 307: | Line 303: | ||
752.0946 | 752.0946 | ||
|- | |- | ||
| | |B | ||
|Ζ | |||
|22\18 | |22\18 | ||
857.945 | 857.945 | ||
Line 323: | Line 320: | ||
902.5136 | 902.5136 | ||
|- | |- | ||
| | |B# | ||
|Ζ# | |||
|23\18 | |23\18 | ||
896.9425 | 896.9425 | ||
Line 339: | Line 337: | ||
1052.9235 | 1052.9235 | ||
|- | |- | ||
! | !Cb | ||
!Ηb | |||
!25\18 | !25\18 | ||
974.9375 | 974.9375 | ||
Line 353: | Line 352: | ||
952.6532 | 952.6532 | ||
|- | |- | ||
| | |C | ||
|Η | |||
|26\18 | |26\18 | ||
1012.935 | 1012.935 | ||
Line 369: | Line 369: | ||
1103.0721 | 1103.0721 | ||
|- | |- | ||
| | |C# | ||
|Η# | |||
|27\18 | |27\18 | ||
1052.9325 | 1052.9325 | ||
Line 385: | Line 386: | ||
1253.4911 | 1253.4911 | ||
|- | |- | ||
| | |Db | ||
|Θb | |||
|28\18 | |28\18 | ||
1091.93 | 1091.93 | ||
Line 399: | Line 401: | ||
1002.7929 | 1002.7929 | ||
|- | |- | ||
| | |D | ||
|Θ | |||
|29\18 | |29\18 | ||
1130.9275 | 1130.9275 | ||
Line 415: | Line 418: | ||
1153.2118 | 1153.2118 | ||
|- | |- | ||
| | |D# | ||
|Θ# | |||
|30\18 | |30\18 | ||
1169.925 | 1169.925 | ||
Line 431: | Line 435: | ||
1303.6307 | 1303.6307 | ||
|- | |- | ||
| | |Eb | ||
|Ιb | |||
|31\18 | |31\18 | ||
1208.9225 | 1208.9225 | ||
Line 445: | Line 450: | ||
1203.3514 | 1203.3514 | ||
|- | |- | ||
| | |E | ||
|Ι | |||
|33\18 | |33\18 | ||
1286.9175 | 1286.9175 | ||
Line 461: | Line 467: | ||
1353.8704 | 1353.8704 | ||
|- | |- | ||
| | |E# | ||
|Ι# | |||
|34\18 | |34\18 | ||
1323.915 | 1323.915 | ||
Line 477: | Line 484: | ||
1504.1892 | 1504.1892 | ||
|- | |- | ||
| | |Ab | ||
|Αb | |||
|35\18 | |35\18 | ||
1364.9125 | 1364.9125 | ||
Line 491: | Line 499: | ||
1253.591 | 1253.591 | ||
|- | |- | ||
! | !A | ||
!Α | |||
! colspan="7" |1403.91 | ! colspan="7" |1403.91 | ||
|} | |||
== Intervals == | |||
{| class="wikitable" | |||
!Generators | |||
!Sesquitave notation | |||
!Interval category name | |||
!Generators | |||
!Notation of 3/2 inverse | |||
!Interval category name | |||
|- | |||
| colspan="6" |The 5-note MOS has the following intervals (from some root): | |||
|- | |||
|0 | |||
|A | |||
|perfect unison | |||
|0 | |||
|A | |||
|sesquitave (just fifth) | |||
|- | |||
|1 | |||
|C | |||
|perfect mosthird (min third) | |||
| -1 | |||
|D | |||
|perfect mos fourth (maj third) | |||
|- | |||
|2 | |||
|Eb | |||
|minor mosfifth | |||
| -2 | |||
|B | |||
|major mossecond | |||
|- | |||
|3 | |||
|Bb | |||
|minor mossecond | |||
| -3 | |||
|E | |||
|major mosfifth | |||
|- | |||
|4 | |||
|Db | |||
|diminished mosfourth | |||
| -4 | |||
|C# | |||
|augmented mosthird | |||
|- | |||
| colspan="6" |The chromatic 8-note MOS also has the following intervals (from some root): | |||
|- | |||
|11 | |||
|Ab | |||
|diminished sesquitave | |||
| -11 | |||
|A# | |||
|augmented unison (chroma) | |||
|- | |||
|12 | |||
|Cb | |||
|diminished mosthird | |||
| -12 | |||
|D# | |||
|augmented mosfourth | |||
|- | |||
|13 | |||
|Ebb | |||
|diminished mosfifth | |||
| -13 | |||
|B# | |||
|augmented mossecond | |||
|} | |||
== Genchain == | |||
The generator chain for this scale is as follows: | |||
{| class="wikitable" | |||
|Bbb | |||
|Ebb | |||
|Cb | |||
|Ab | |||
|Db | |||
|Bb | |||
|Eb | |||
|C | |||
|A | |||
|D | |||
|B | |||
|E | |||
|C# | |||
|A# | |||
|D# | |||
|B# | |||
|E# | |||
|- | |||
|d2 | |||
|d5 | |||
|d3 | |||
|d6 | |||
|d4 | |||
|m2 | |||
|m5 | |||
|P3 | |||
|P1 | |||
|P4 | |||
|M2 | |||
|M5 | |||
|a3 | |||
|a1 | |||
|a4 | |||
|a2 | |||
|a5 | |||
|} | |||
== Modes == | |||
The mode names are based on the major satellites of Uranus, in order of size: | |||
{| class="wikitable" | |||
!Mode | |||
!Scale | |||
![[Modal UDP Notation|UDP]] | |||
! colspan="4" |Interval type (mos-) | |||
|- | |||
!name | |||
!pattern | |||
!notation | |||
!2nd | |||
!3rd | |||
!4th | |||
!5th | |||
|- | |||
|Titanian | |||
|LLsLs | |||
|<nowiki>4|0</nowiki> | |||
|M | |||
|A | |||
|P | |||
|M | |||
|- | |||
|Oberonan | |||
|LsLLs | |||
|<nowiki>3|1</nowiki> | |||
|M | |||
|P | |||
|P | |||
|M | |||
|- | |||
|Umbrielan | |||
|LsLsL | |||
|<nowiki>2|2</nowiki> | |||
|M | |||
|P | |||
|P | |||
|m | |||
|- | |||
|Arielan | |||
|sLLsL | |||
|<nowiki>1|3</nowiki> | |||
|m | |||
|P | |||
|P | |||
|m | |||
|- | |||
|Mirandan | |||
|sLsLL | |||
|<nowiki>0|4</nowiki> | |||
|m | |||
|P | |||
|d | |||
|m | |||
|} | |||
== Temperaments == | |||
The most basic rank-2 temperament interpretation of uranian is '''semiwolf''', which has 4:7:10 chords spelled <code>root-(p+1g)-(3p-2g)</code> (p = 3/2, g = the approximate 7/6). The name "semiwolf" comes from two [[7/6]] generators approximating a [[27/20]] wolf fourth. This is further extended to the 11-limit in two interpretations: '''semilupine''' where 2 major mos2nds (LL) equal 11/9, and '''hemilycan''' where 1 major and 2 minor mos2nds (sLs) equal 11/9. Basic 8edf fits both extensions. | |||
===Semiwolf=== | |||
[[Subgroup]]: 3/2.7/4.5/2 | |||
[[Comma]] list: [[245/243]] | |||
[[POL2]] generator: ~7/6 = 262.1728 | |||
[[Mapping]]: [{{val|1 1 3}}, {{val|0 1 -2}}] | |||
[[Vals]]: {{val list|8edf, 11edf, 13edf}} | |||
====Semilupine==== | |||
[[Subgroup]]: 3/2.7/4.5/2.11/4 | |||
[[Comma]] list: [[245/243]], [[100/99]] | |||
[[POL2]] generator: ~7/6 = 264.3771 | |||
[[Mapping]]: [{{val|1 1 3 4}}, {{val|0 1 -2 -4}}] | |||
[[Vals]]: {{val list|8edf, 13edf}} | |||
====Hemilycan==== | |||
[[Subgroup]]: 3/2.7/4.5/2.11/4 | |||
[[Comma]] list: [[245/243]], [[441/440]] | |||
[[POL2]] generator: ~7/6 = 261.5939 | |||
[[Mapping]]: [{{val|1 1 3 1}}, {{val|0 1 -2 4}}] | |||
[[Vals]]: {{val list|8edf, 11edf}} | |||
== Scale tree== | |||
The spectrum looks like this: | |||
{| class="wikitable" | |||
! colspan="4" rowspan="2" |Generator | |||
(bright) | |||
! colspan="2" |Cents | |||
! rowspan="2" |L | |||
! rowspan="2" |s | |||
! rowspan="2" |L/s | |||
! rowspan="2" |Comments | |||
|- | |||
!Chroma-positive | |||
!Chroma-negative | |||
|- | |||
|3\5 | |||
| | |||
| | |||
| | |||
|421.173 | |||
|280.782 | |||
|1 | |||
|1 | |||
|1.000 | |||
|Equalised | |||
|- | |||
| | |||
| | |||
| | |||
|11\18 | |||
|428.9725 | |||
|272.983 | |||
|4 | |||
|3 | |||
|1.333 | |||
| | |||
|- | |||
| | |||
| | |||
|8\13 | |||
| | |||
|431.9723 | |||
|269.983 | |||
|3 | |||
|2 | |||
|1.500 | |||
|Semiwolf and Semilupine start here | |||
|- | |||
| | |||
| | |||
| | |||
|13\21 | |||
|435.084 | |||
|266.871 | |||
|5 | |||
|3 | |||
|1.667 | |||
| | |||
|- | |||
| | |||
|5\8 | |||
| | |||
| | |||
|438.7219 | |||
|263.233 | |||
|2 | |||
|1 | |||
|2.000 | |||
|Semilupine ends, Hemilycan begins | |||
|- | |||
| | |||
| | |||
| | |||
|12\19 | |||
|443.34 | |||
|258.615 | |||
|5 | |||
|2 | |||
|2.500 | |||
| | |||
|- | |||
| | |||
| | |||
|7\11 | |||
| | |||
|446.699 | |||
|255.256 | |||
|3 | |||
|1 | |||
|3.000 | |||
|Semiwolf and Hemilycan end here | |||
|- | |||
| | |||
| | |||
| | |||
|9\14 | |||
|451.2568 | |||
|250.6982 | |||
|4 | |||
|1 | |||
|4.000 | |||
|Near [[24edo]] | |||
|- | |||
|2\3 | |||
| | |||
| | |||
| | |||
|467.97 | |||
|233.985 | |||
|1 | |||
|0 | |||
|→ inf | |||
|Paucitonic | |||
|} | |} | ||
[[Category:Scales]] | [[Category:Scales]] | ||
[[Category:Abstract MOS patterns]] | [[Category:Abstract MOS patterns]] | ||
[[Category:Nonoctave]] | [[Category:Nonoctave]] |
Revision as of 14:44, 11 May 2021
↖ 2L 1s⟨3/2⟩ | ↑ 3L 1s⟨3/2⟩ | 4L 1s⟨3/2⟩ ↗ |
← 2L 2s⟨3/2⟩ | 3L 2s (3/2-equivalent) | 4L 2s⟨3/2⟩ → |
↙ 2L 3s⟨3/2⟩ | ↓ 3L 3s⟨3/2⟩ | 4L 3s⟨3/2⟩ ↘ |
┌╥╥┬╥┬┐ │║║│║││ │││││││ └┴┴┴┴┴┘
sLsLL
3L 2s<3/2> (sometimes called uranian), is a fifth-repeating MOS scale. The notation "<3/2>" means the period of the MOS is 3/2, disambiguating it from octave-repeating 3L 2s. The name of the period interval is called the sesquitave (by analogy to the tritave).
The generator range is 234 to 280.8 cents, placing it in between the diatonic major second and the diatonic minor third, usually representing a subminor third of some type (like 7/6). The bright (chroma-positive) generator is, however, its fifth complement (468 to 421.2 cents).
Because uranian is a fifth-repeating scale, each tone has a 3/2 perfect fifth above it. The scale has three major chords and two minor chords, all voiced so that the third of the triad is an octave higher, a tenth. Uranian also has two harmonic 7th chords.
Basic uranian is in 8edf, which is a very good fifth-based equal tuning similar to 88cET.
Notation
There are 2 main ways to notate the uranian scale. One method uses a simple sesquitave (fifth) repeating notation consisting of 5 naturals (A-E). Given that 1-7/4-5/2 is fifth-equivalent to a tone cluster of 1-10/9-7/6, it may be more convenient to notate uranian scales as repeating at the double sesquitave (major ninth), however it does make navigating the genchain harder. This way, 7/4 is its own pitch class, distinct from 7/6. Notating this way produces a major ninth which is the Aeolian mode of Annapolis[6L 4s]. Since there are exactly 10 naturals in double sesquitave notation, Greek numerals 1-10 may be used.
Notation | Supersoft | Soft | Semisoft | Basic | Semihard | Hard | Superhard | |
---|---|---|---|---|---|---|---|---|
Sesq | D-Sesq | 18edf | 13edf | 21edf | 8edf | 19edf | 11edf | 14edf |
A# | Α# | 1\18
38.9975 |
1\13
53.9965 |
2\21
66.8529 |
1\8
87.7444 |
3\19
110.835 |
2\11
127.6282 |
3\14
150.4189 |
Bb | Βb | 3\18
116.9925 |
2\13
107.9931 |
3\21
100.2793 |
2\19
73.89 |
1\11
63.814 |
1\14
50.1396 | |
B | Β | 4\18
155.99 |
3\13
161.9896 |
5\21
167.1321 |
2\8
175.48875 |
5\19
184.725 |
3\11
191.4423 |
4\14
200.5586 |
B# | Β# | 5\18
194.9875 |
4\13
215.9862 |
7\21
233.985 |
3\8
263.2331 |
8\19
295.56 |
5\11
319.07045 |
7\14
350.9775 |
Cb | Γb | 7\18
272.9825 |
5\13
269.9829 |
8\21
267.4114 |
7\19
258.615 |
4\11
255.2564 |
5\14
250.6982 | |
C | Γ | 8\18
311.98 |
6\13
323.9792 |
10\21
334.2643 |
4\8
350.9775 |
10\19
369.45 |
6\11
382.88455 |
8\14
401.1171 |
C# | Γ# | 9\18
350.9775 |
7\13
377.9758 |
12\21
401.1171 |
5\8
438.7219 |
13\19
470.285 |
8\11
510.5128 |
11\14
551.536 |
Db | Δb | 10\18
389.975 |
11\21
367.9607 |
4\8
350.9775 |
9\19
332.505 |
5\11
319.07045 |
6\14
300.8379 | |
D | Δ | 11\18
428.9725 |
8\13
431.9723 |
13\21
434.5436 |
5\8
438.7219 |
12\19
443.34 |
7\11
446.6986 |
9\14
451.2568 |
D# | Δ# | 12\18
467.97 |
9\13
485.9688 |
15\21
501.3964 |
6\8
526.46625 |
15\19
554.175 |
9\11
574.3268 |
12\14
601.6757 |
Eb | Εb | 13\18
506.9675 |
10\13
539.9653 |
16\21
534.8229 |
14\19
516.23 |
8\11
510.5128 |
10\14
501.3964 | |
E | Ε | 15\18
584.9625 |
11\13
593.9619 |
18\21
601.6757 |
7\8
614.2106 |
17\19
628.065 |
10\11
638.1409 |
13\14
651.8154 |
E# | Ε# | 16\18
622.96 |
12\13
646.9585 |
20\21
668.5286 |
8\8
701.955 |
20\19
738.9 |
12\11
765.769 |
16\14
802.2343 |
Ab | Ϛb/Ϝb | 17\18
662.9575 |
19\21
635.1021 |
7\8
614.2106 |
16\19
591.12 |
9\11
574.3268 |
11\14
551.636 | |
A | Ϛ/Ϝ | 701.955 | ||||||
A# | Ϛ#/Ϝ# | 19\18
740.9525 |
14\13
754.9515 |
23\21
768.8021 |
9\8
789.6994 |
22\19
812.79 |
13\11
829.5832 |
17\14
852.3739 |
Bb | Ζb | 21\18
818.9475 |
15\13
809.9481 |
24\21
802.2343 |
21\19
775.845 |
12\11
765.769 |
15\14
752.0946 | |
B | Ζ | 22\18
857.945 |
16\13
862.9446 |
26\21
868.0871 |
10\8
877.44375 |
24\19
886.68 |
14\11
893.3973 |
18\14
902.5136 |
B# | Ζ# | 23\18
896.9425 |
17\13
917.9412 |
28\21
935.94 |
11\8
965.1881 |
27\19
997.515 |
16\11
1021.02545 |
21\14
1052.9235 |
Cb | Ηb | 25\18
974.9375 |
18\13
971.9379 |
29\21
969.3664 |
26\19
960.57 |
15\11
957.2114 |
19\14
952.6532 | |
C | Η | 26\18
1012.935 |
19\13
1025.9342 |
31\21
1036.2193 |
12\8
1052.9235 |
29\19
1071.405 |
17\11
1084.83955 |
22\14
1103.0721 |
C# | Η# | 27\18
1052.9325 |
20\13
1079.9308 |
33\21
1103.0721 |
13\8
1140.7769 |
32\19
1172.24 |
19\11
1212.5678 |
25\14
1253.4911 |
Db | Θb | 28\18
1091.93 |
32\21
1069.9157 |
12\8
1052.9235 |
28\19
1034.46 |
16\11
1021.02545 |
20\14
1002.7929 | |
D | Θ | 29\18
1130.9275 |
21\13
1133.9273 |
34\21
1136.4986 |
13\8
1140.7769 |
31\19
1145.295 |
18\11
1148.6536 |
23\14
1153.2118 |
D# | Θ# | 30\18
1169.925 |
22\13
1187.9238 |
36\21
1203.3514 |
14\8
1228.42125 |
34\19
1256.13 |
20\11
1276.2818 |
26\14
1303.6307 |
Eb | Ιb | 31\18
1208.9225 |
23\13
1241.9203 |
37\21
1236.7779 |
33\19
1218.285 |
19\11
1212.5678 |
24\14
1203.3514 | |
E | Ι | 33\18
1286.9175 |
24\13
1295.9169 |
39\21
1303.6307 |
15\8
1316.1656 |
36\19
1330.02 |
21\11
1340.0959 |
27\14
1353.8704 |
E# | Ι# | 34\18
1323.915 |
25\13
1348.9135 |
41\21
1370.4836 |
16\8
1403.91 |
39\19
1440.855 |
23\11
1468.724 |
30\14
1504.1892 |
Ab | Αb | 35\18
1364.9125 |
40\21
1337.0571 |
15\8
1316.1656 |
35\19
1293.075 |
20\11
1276.2818 |
25\14
1253.591 | |
A | Α | 1403.91 |
Intervals
Generators | Sesquitave notation | Interval category name | Generators | Notation of 3/2 inverse | Interval category name |
---|---|---|---|---|---|
The 5-note MOS has the following intervals (from some root): | |||||
0 | A | perfect unison | 0 | A | sesquitave (just fifth) |
1 | C | perfect mosthird (min third) | -1 | D | perfect mos fourth (maj third) |
2 | Eb | minor mosfifth | -2 | B | major mossecond |
3 | Bb | minor mossecond | -3 | E | major mosfifth |
4 | Db | diminished mosfourth | -4 | C# | augmented mosthird |
The chromatic 8-note MOS also has the following intervals (from some root): | |||||
11 | Ab | diminished sesquitave | -11 | A# | augmented unison (chroma) |
12 | Cb | diminished mosthird | -12 | D# | augmented mosfourth |
13 | Ebb | diminished mosfifth | -13 | B# | augmented mossecond |
Genchain
The generator chain for this scale is as follows:
Bbb | Ebb | Cb | Ab | Db | Bb | Eb | C | A | D | B | E | C# | A# | D# | B# | E# |
d2 | d5 | d3 | d6 | d4 | m2 | m5 | P3 | P1 | P4 | M2 | M5 | a3 | a1 | a4 | a2 | a5 |
Modes
The mode names are based on the major satellites of Uranus, in order of size:
Mode | Scale | UDP | Interval type (mos-) | |||
---|---|---|---|---|---|---|
name | pattern | notation | 2nd | 3rd | 4th | 5th |
Titanian | LLsLs | 4|0 | M | A | P | M |
Oberonan | LsLLs | 3|1 | M | P | P | M |
Umbrielan | LsLsL | 2|2 | M | P | P | m |
Arielan | sLLsL | 1|3 | m | P | P | m |
Mirandan | sLsLL | 0|4 | m | P | d | m |
Temperaments
The most basic rank-2 temperament interpretation of uranian is semiwolf, which has 4:7:10 chords spelled root-(p+1g)-(3p-2g)
(p = 3/2, g = the approximate 7/6). The name "semiwolf" comes from two 7/6 generators approximating a 27/20 wolf fourth. This is further extended to the 11-limit in two interpretations: semilupine where 2 major mos2nds (LL) equal 11/9, and hemilycan where 1 major and 2 minor mos2nds (sLs) equal 11/9. Basic 8edf fits both extensions.
Semiwolf
Subgroup: 3/2.7/4.5/2
POL2 generator: ~7/6 = 262.1728
Mapping: [⟨1 1 3], ⟨0 1 -2]]
Semilupine
Subgroup: 3/2.7/4.5/2.11/4
POL2 generator: ~7/6 = 264.3771
Mapping: [⟨1 1 3 4], ⟨0 1 -2 -4]]
Hemilycan
Subgroup: 3/2.7/4.5/2.11/4
POL2 generator: ~7/6 = 261.5939
Mapping: [⟨1 1 3 1], ⟨0 1 -2 4]]
Scale tree
The spectrum looks like this:
Generator
(bright) |
Cents | L | s | L/s | Comments | ||||
---|---|---|---|---|---|---|---|---|---|
Chroma-positive | Chroma-negative | ||||||||
3\5 | 421.173 | 280.782 | 1 | 1 | 1.000 | Equalised | |||
11\18 | 428.9725 | 272.983 | 4 | 3 | 1.333 | ||||
8\13 | 431.9723 | 269.983 | 3 | 2 | 1.500 | Semiwolf and Semilupine start here | |||
13\21 | 435.084 | 266.871 | 5 | 3 | 1.667 | ||||
5\8 | 438.7219 | 263.233 | 2 | 1 | 2.000 | Semilupine ends, Hemilycan begins | |||
12\19 | 443.34 | 258.615 | 5 | 2 | 2.500 | ||||
7\11 | 446.699 | 255.256 | 3 | 1 | 3.000 | Semiwolf and Hemilycan end here | |||
9\14 | 451.2568 | 250.6982 | 4 | 1 | 4.000 | Near 24edo | |||
2\3 | 467.97 | 233.985 | 1 | 0 | → inf | Paucitonic |