72edo: Difference between revisions
Line 21: | Line 21: | ||
| | degrees | | | degrees | ||
| | cents value | | | cents value | ||
| | approximate ratios ( | | | approximate ratios (17-limit) | ||
| colspan="3" style="text-align:center;" | [[Ups_and_Downs_Notation|ups and downs]] [[Ups_and_Downs_Notation|notation]] | | colspan="3" style="text-align:center;" | [[Ups_and_Downs_Notation|ups and downs]] [[Ups_and_Downs_Notation|notation]] | ||
|- | |- | ||
Line 70: | Line 70: | ||
| | 6 | | | 6 | ||
| | 100 | | | 100 | ||
| | 35/33 | | | 35/33, 17/16, 18/17 | ||
| style="text-align:center;" | m2 | | style="text-align:center;" | m2 | ||
| style="text-align:center;" | minor 2nd | | style="text-align:center;" | minor 2nd | ||
Line 77: | Line 77: | ||
| | 7 | | | 7 | ||
| | 116.667 | | | 116.667 | ||
| | 15/14 | | | 15/14, 16/15 | ||
| style="text-align:center;" | ^m2 | | style="text-align:center;" | ^m2 | ||
| style="text-align:center;" | upminor 2nd | | style="text-align:center;" | upminor 2nd | ||
Line 84: | Line 84: | ||
| | 8 | | | 8 | ||
| | 133.333 | | | 133.333 | ||
| | 27/25 | | | 27/25, 13/12, 14/13 | ||
| style="text-align:center;" | v~2 | | style="text-align:center;" | v~2 | ||
| style="text-align:center;" | downmid 2nd | | style="text-align:center;" | downmid 2nd | ||
Line 119: | Line 119: | ||
| | 13 | | | 13 | ||
| | 216.667 | | | 216.667 | ||
| | 25/22 | | | 25/22, 17/15 | ||
| style="text-align:center;" | ^M2 | | style="text-align:center;" | ^M2 | ||
| style="text-align:center;" | upmajor 2nd | | style="text-align:center;" | upmajor 2nd | ||
Line 133: | Line 133: | ||
| | 15 | | | 15 | ||
| | 250 | | | 250 | ||
| | 81/70 | | | 81/70, 15/13 | ||
| style="text-align:center;" | ^<span style="font-size: 90%; vertical-align: super;">3</span>M2, v<span style="font-size: 90%; vertical-align: super;">3</span>m3 | | style="text-align:center;" | ^<span style="font-size: 90%; vertical-align: super;">3</span>M2, v<span style="font-size: 90%; vertical-align: super;">3</span>m3 | ||
| style="text-align:center;" | triple-up major 2nd, | | style="text-align:center;" | triple-up major 2nd, | ||
Line 149: | Line 149: | ||
| | 17 | | | 17 | ||
| | 283.333 | | | 283.333 | ||
| | 33/28 | | | 33/28, 13/11, 20/17 | ||
| style="text-align:center;" | vm3 | | style="text-align:center;" | vm3 | ||
| style="text-align:center;" | downminor 3rd | | style="text-align:center;" | downminor 3rd | ||
Line 170: | Line 170: | ||
| | 20 | | | 20 | ||
| | 333.333 | | | 333.333 | ||
| | 40/33 | | | 40/33, 17/14 | ||
| style="text-align:center;" | v~3 | | style="text-align:center;" | v~3 | ||
| style="text-align:center;" | downmid 3rd | | style="text-align:center;" | downmid 3rd | ||
Line 184: | Line 184: | ||
| | 22 | | | 22 | ||
| | 366.667 | | | 366.667 | ||
| | 99/80 | | | 99/80, 16/13, 21/17 | ||
| style="text-align:center;" | ^~3 | | style="text-align:center;" | ^~3 | ||
| style="text-align:center;" | upmid 3rd | | style="text-align:center;" | upmid 3rd | ||
Line 219: | Line 219: | ||
| | 27 | | | 27 | ||
| | 450 | | | 450 | ||
| | 35/27 | | | 35/27, 13/10 | ||
| style="text-align:center;" | ^<span style="font-size: 90%; vertical-align: super;">3</span>M3, v<span style="font-size: 90%; vertical-align: super;">3</span>4 | | style="text-align:center;" | ^<span style="font-size: 90%; vertical-align: super;">3</span>M3, v<span style="font-size: 90%; vertical-align: super;">3</span>4 | ||
| style="text-align:center;" | triple-up major 3rd, | | style="text-align:center;" | triple-up major 3rd, | ||
Line 228: | Line 228: | ||
| | 28 | | | 28 | ||
| | 466.667 | | | 466.667 | ||
| | 21/16 | | | 21/16, 17/13 | ||
| style="text-align:center;" | vv4 | | style="text-align:center;" | vv4 | ||
| style="text-align:center;" | double-down 4th | | style="text-align:center;" | double-down 4th | ||
Line 270: | Line 270: | ||
| | 34 | | | 34 | ||
| | 566.667 | | | 566.667 | ||
| | 25/18 | | | 25/18, 18/13 | ||
| style="text-align:center;" | ^~4 | | style="text-align:center;" | ^~4 | ||
| style="text-align:center;" | upmid 4th | | style="text-align:center;" | upmid 4th | ||
Line 284: | Line 284: | ||
| | 36 | | | 36 | ||
| | 600 | | | 600 | ||
| | 99/70 | | | 99/70, 17/12 | ||
| style="text-align:center;" | A4, d5 | | style="text-align:center;" | A4, d5 | ||
| style="text-align:center;" | aug 4th, dim 5th | | style="text-align:center;" | aug 4th, dim 5th | ||
Line 298: | Line 298: | ||
| | 38 | | | 38 | ||
| | 633.333 | | | 633.333 | ||
| | 36/25 | | | 36/25, 13/9 | ||
| style="text-align:center;" | v~5 | | style="text-align:center;" | v~5 | ||
| style="text-align:center;" | downmid 5th | | style="text-align:center;" | downmid 5th | ||
Line 347: | Line 347: | ||
| | 45 | | | 45 | ||
| | 750 | | | 750 | ||
| | 54/35 | | | 54/35, 17/11 | ||
| style="text-align:center;" | ^<span style="font-size: 90%; vertical-align: super;">3</span>5, v<span style="font-size: 90%; vertical-align: super;">3</span>m6 | | style="text-align:center;" | ^<span style="font-size: 90%; vertical-align: super;">3</span>5, v<span style="font-size: 90%; vertical-align: super;">3</span>m6 | ||
| style="text-align:center;" | triple-up 5th, | | style="text-align:center;" | triple-up 5th, | ||
Line 384: | Line 384: | ||
| | 50 | | | 50 | ||
| | 833.333 | | | 833.333 | ||
| | 81/50 | | | 81/50, 13/8 | ||
| style="text-align:center;" | v~6 | | style="text-align:center;" | v~6 | ||
| style="text-align:center;" | downmid 6th | | style="text-align:center;" | downmid 6th | ||
Line 398: | Line 398: | ||
| | 52 | | | 52 | ||
| | 866.667 | | | 866.667 | ||
| | 33/20 | | | 33/20, 28/17 | ||
| style="text-align:center;" | ^~6 | | style="text-align:center;" | ^~6 | ||
| style="text-align:center;" | upmid 6th | | style="text-align:center;" | upmid 6th | ||
Line 419: | Line 419: | ||
| | 55 | | | 55 | ||
| | 916.667 | | | 916.667 | ||
| | 56/33 | | | 56/33, 17/10 | ||
| style="text-align:center;" | ^M6 | | style="text-align:center;" | ^M6 | ||
| style="text-align:center;" | upmajor 6th | | style="text-align:center;" | upmajor 6th | ||
Line 498: | Line 498: | ||
| | 66 | | | 66 | ||
| | 1100 | | | 1100 | ||
| | 66/35 | | | 66/35, 17/9 | ||
| style="text-align:center;" | M7 | | style="text-align:center;" | M7 | ||
| style="text-align:center;" | major 7th | | style="text-align:center;" | major 7th |
Revision as of 19:57, 5 June 2020
Theory
72-tone equal temperament, or 72-edo, divides the octave into 72 steps or moria. This produces a twelfth-tone tuning, with the whole tone measuring 200 cents, the same as in 12-tone equal temperament. 72-tone is also a superset of 24-tone equal temperament, a common and standard tuning of Arabic music, and has itself been used to tune Turkish music.
Composers that used 72-tone include Alois Hába, Ivan Wyschnegradsky, Julián Carillo (who is better associated with 96-edo), Iannis Xenakis, Ezra Sims, James Tenney and the jazz musician Joe Maneri.
72-tone equal temperament approximates 11-limit just intonation exceptionally well, is consistent in the 17-limit, and is the ninth Zeta integral tuning. The octave, fifth and fourth are the same size as they would be in 12-tone, 72, 42 and 30 steps respectively, but the major third (5/4) measures 23 steps, not 24, and other 5-limit major intervals are one step flat of 12-et while minor ones are one step sharp. The septimal minor seventh (7/4) is 58 steps, while the undecimal semiaugmented fourth (11/8) is 33.
72 is an excellent tuning for miracle temperament, especially the 11-limit version, and the related rank three temperament prodigy, and is a good tuning for other temperaments and scales, including wizard, harry, catakleismic, compton, unidec and tritikleismic.
Intervals
degrees | cents value | approximate ratios (17-limit) | ups and downs notation | ||
0 | 0.000 | 1/1 | P1 | perfect unison | D |
1 | 16.667 | 81/80 | ^1 | up unison | ^D |
2 | 33.333 | 45/44 | ^^ | double-up unison | ^^D |
3 | 50 | 33/32 | ^31, v3m2 | triple-up unison,
triple-down minor 2nd |
^3D, v3Eb |
4 | 66.667 | 25/24 | vvm2 | double-downminor 2nd | vvEb |
5 | 83.333 | 21/20 | vm2 | downminor 2nd | vEb |
6 | 100 | 35/33, 17/16, 18/17 | m2 | minor 2nd | Eb |
7 | 116.667 | 15/14, 16/15 | ^m2 | upminor 2nd | ^Eb |
8 | 133.333 | 27/25, 13/12, 14/13 | v~2 | downmid 2nd | ^^Eb |
9 | 150 | 12/11 | ~2 | mid 2nd | v3E |
10 | 166.667 | 11/10 | ^~2 | upmid 2nd | vvE |
11 | 183.333 | 10/9 | vM2 | downmajor 2nd | vE |
12 | 200 | 9/8 | M2 | major 2nd | E |
13 | 216.667 | 25/22, 17/15 | ^M2 | upmajor 2nd | ^E |
14 | 233.333 | 8/7 | ^^M2 | double-upmajor 2nd | ^^E |
15 | 250 | 81/70, 15/13 | ^3M2, v3m3 | triple-up major 2nd,
triple-down minor 3rd |
^3E, v3F |
16 | 266.667 | 7/6 | vvm3 | double-downminor 3rd | vvF |
17 | 283.333 | 33/28, 13/11, 20/17 | vm3 | downminor 3rd | vF |
18 | 300 | 25/21 | m3 | minor 3rd | F |
19 | 316.667 | 6/5 | ^m3 | upminor 3rd | ^F |
20 | 333.333 | 40/33, 17/14 | v~3 | downmid 3rd | ^^F |
21 | 350 | 11/9 | ~3 | mid 3rd | ^3F |
22 | 366.667 | 99/80, 16/13, 21/17 | ^~3 | upmid 3rd | vvF# |
23 | 383.333 | 5/4 | vM3 | downmajor 3rd | vF# |
24 | 400 | 44/35 | M3 | major 3rd | F# |
25 | 416.667 | 14/11 | ^M3 | upmajor 3rd | ^F# |
26 | 433.333 | 9/7 | ^^M3 | double-upmajor 3rd | ^^F# |
27 | 450 | 35/27, 13/10 | ^3M3, v34 | triple-up major 3rd,
triple-down 4th |
^3F#, v3G |
28 | 466.667 | 21/16, 17/13 | vv4 | double-down 4th | vvG |
29 | 483.333 | 33/25 | v4 | down 4th | vG |
30 | 500 | 4/3 | P4 | perfect 4th | G |
31 | 516.667 | 27/20 | ^4 | up 4th | ^G |
32 | 533.333 | 15/11 | v~4 | downmid 4th | ^^G |
33 | 550 | 11/8 | ~4 | mid 4th | ^3G |
34 | 566.667 | 25/18, 18/13 | ^~4 | upmid 4th | vvG# |
35 | 583.333 | 7/5 | vA4, vd5 | downaug 4th, updim 5th | vG#, vAb |
36 | 600 | 99/70, 17/12 | A4, d5 | aug 4th, dim 5th | G#, Ab |
37 | 616.667 | 10/7 | ^A4, ^d5 | upaug 4th, downdim 5th | ^G#, ^Ab |
38 | 633.333 | 36/25, 13/9 | v~5 | downmid 5th | ^^Ab |
39 | 650 | 16/11 | ~5 | mid 5th | v3A |
40 | 666.667 | 22/15 | ^~5 | upmid 5th | vvA |
41 | 683.333 | 40/27 | v5 | down 5th | vA |
42 | 700 | 3/2 | P5 | perfect 5th | A |
43 | 716.667 | 50/33 | ^5 | up 5th | ^A |
44 | 733.333 | 32/21 | ^^5 | double-up 5th | ^^A |
45 | 750 | 54/35, 17/11 | ^35, v3m6 | triple-up 5th,
triple-down minor 6th |
^3A, v3Bb |
46 | 766.667 | 14/9 | vvm6 | double-downminor 6th | vvBb |
47 | 783.333 | 11/7 | vm6 | downminor 6th | vBb |
48 | 800 | 35/22 | m6 | minor 6th | Bb |
49 | 816.667 | 8/5 | ^m6 | upminor 6th | ^Bb |
50 | 833.333 | 81/50, 13/8 | v~6 | downmid 6th | ^^Bb |
51 | 850 | 18/11 | ~6 | mid 6th | v3B |
52 | 866.667 | 33/20, 28/17 | ^~6 | upmid 6th | vvB |
53 | 883.333 | 5/3 | vM6 | downmajor 6th | vB |
54 | 900 | 27/16 | M6 | major 6th | B |
55 | 916.667 | 56/33, 17/10 | ^M6 | upmajor 6th | ^B |
56 | 933.333 | 12/7 | ^^M6 | double-upmajor 6th | ^^B |
57 | 950 | 121/70 | ^3M6, v3m7 | triple-up major 6th,
triple-down minor 7th |
^3B, v3C |
58 | 966.667 | 7/4 | vvm7 | double-downminor 7th | vvC |
59 | 983.333 | 44/25 | vm7 | downminor 7th | vC |
60 | 1000 | 16/9 | m7 | minor 7th | C |
61 | 1016.667 | 9/5 | ^m7 | upminor 7th | ^C |
62 | 1033.333 | 20/11 | v~7 | downmid 7th | ^^C |
63 | 1050 | 11/6 | ~7 | mid 7th | ^3C |
64 | 1066.667 | 50/27 | ^~7 | upmid 7th | vvC# |
65 | 1083.333 | 15/8 | vM7 | downmajor 7th | vC# |
66 | 1100 | 66/35, 17/9 | M7 | major 7th | C# |
67 | 1116.667 | 21/11 | ^M7 | upmajor 7th | ^C# |
68 | 1133.333 | 27/14 | ^^M7 | double-upmajor 7th | ^^C# |
69 | 1150 | 35/18 | ^3M7, v38 | triple-up major 7th,
triple-down octave |
^3C#, v3D |
70 | 1166.667 | 49/25 | vv8 | double-down octave | vvD |
71 | 1183.333 | 99/50 | v8 | down octave | vD |
72 | 1200 | 2/1 | P8 | perfect octave | D |
Combining ups and downs notation with color notation, qualities can be loosely associated with colors:
quality | color | monzo format | examples |
---|---|---|---|
double-down minor | zo | {a, b, 0, 1} | 7/6, 7/4 |
minor | fourthward wa | {a, b}, b < -1 | 32/27, 16/9 |
upminor | gu | {a, b, -1} | 6/5, 9/5 |
mid | ilo | {a, b, 0, 0, 1} | 11/9, 11/6 |
" | lu | {a, b, 0, 0, -1} | 12/11, 18/11 |
downmajor | yo | {a, b, 1} | 5/4, 5/3 |
major | fifthward wa | {a, b}, b > 1 | 9/8, 27/16 |
double-up major | ru | {a, b, 0, -1} | 9/7, 12/7 |
All 72-edo chords can be named using ups and downs. An up, down or mid after the chord root affects the 3rd, 6th, 7th, and/or the 11th (every other note of a stacked-3rds chord 6-1-3-5-7-9-11-13). Alterations are always enclosed in parentheses, additions never are. Here are the zo, gu, ilo, yo and ru triads:
color of the 3rd | JI chord | notes as edosteps | notes of C chord | written name | spoken name |
---|---|---|---|---|---|
zo | 6:7:9 | 0-16-42 | C vvEb G | Cvvm | C double-down minor |
gu | 10:12:15 | 0-19-42 | C ^Eb G | C^m | C upminor |
ilo | 18:22:27 | 0-21-42 | C v3E G | C~ | C mid |
yo | 4:5:6 | 0-23-42 | C vE G | Cv | C downmajor or C down |
ru | 14:18:27 | 0-26-42 | C ^^E G | C^^ | C double-upmajor or C double-up |
For a more complete list, see Ups and Downs Notation - Chord names in other EDOs.
Approximations to prime harmonics
prime 2 | prime 3 | prime 5 | prime 7 | prime 11 | prime 13 | prime 17 | prime 19 | prime 23 | prime 29 | prime 31 | |
---|---|---|---|---|---|---|---|---|---|---|---|
error | 0.0¢ | -1.955¢ | -2.980¢ | -2.159¢ | -1.318¢ | -7.194¢ | -4.955¢ | +2.487¢ | +5.059¢ | +3.755¢ | -4.964¢ |
Commas
Commas tempered out by 72edo include...
3-limit |
---|
Pythagorean comma = 531441/524288 = |-19 12> |
5-limit |
---|
kleisma = 15625/15552 = |-6 -5 6>
ampersand = 34171875/33554432 = |-25 7 6> graviton = 129140163/128000000 = |-13 17 -6> ennealimma = 7629394531250/7625597484987 = |1 -27 18> |
7-limit | 11-limit | 13-limit |
---|---|---|
...............................
225/224 1029/1024 2401/2400 4375/4374 16875/16807 19683/19600 420175/419904 250047/250000 |
.......................
243/242 385/384 441/440 540/539 1375/1372 3025/3024 4000/3993 6250/6237 9801/9800 |
.......................
169/168 325/324 351/350 364/363 625/624 676/675 729/728 1001/1000 1575/1573 1716/1715 2080/2079 6656/6655 |
Temperaments
It provides the optimal patent val for miracle and wizard in the 7-limit, miracle, catakleismic, bikleismic, compton, ennealimnic, ennealiminal, enneaportent, marvolo and catalytic in the 11-limit, and catakleismic, bikleismic, compton, comptone, enneaportent, ennealim, catalytic, marvolo, manna, hendec, lizard, neominor, hours, and semimiracle in the 13-limit.
See also List of edo-distinct 72et rank two temperaments.
Scales
smithgw72a, smithgw72b, smithgw72c, smithgw72d, smithgw72e, smithgw72f, smithgw72g, smithgw72h, smithgw72i, smithgw72j
blackjack, miracle_8, miracle_10, miracle_12, miracle_12a, miracle_24hi, miracle_24lo
keenanmarvel, xenakis_chrome, xenakis_diat, xenakis_schrome
Euler(24255) genus in 72 equal
Harmonic Scale
Mode 8 of the harmonic series -- overtones 8 through 16, octave repeating -- is well-represented in 72edo. Note that all the different step sizes are distinguished, except for 13:12 and 14:13 (conflated to 8\72edo, 133.3 cents) and 15:14 and 16:15 (conflated to 7\72edo, 116.7 cents, the generator for miracle temperament).
Overtones in "Mode 8": | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | ||||||||
...as JI Ratio from 1/1: | 1/1 | 9/8 | 5/4 | 11/8 | 3/2 | 13/8 | 7/4 | 15/8 | 2/1 | ||||||||
...in cents: | 0 | 203.9 | 386.3 | 551.3 | 702.0 | 840.5 | 968.8 | 1088.3 | 1200.0 | ||||||||
Nearest degree of 72edo: | 0 | 12 | 23 | 33 | 42 | 50 | 58 | 65 | 72 | ||||||||
...in cents: | 0 | 200.0 | 383.3 | 550.0 | 700.0 | 833.3 | 966.7 | 1083.3 | 1200.0 | ||||||||
Steps as Freq. Ratio: | 9:8 | 10:9 | 11:10 | 12:11 | 13:12 | 14:13 | 15:14 | 16:15 | |||||||||
...in cents: | 203.9 | 182.4 | 165.0 | 150.6 | 138.6 | 128.3 | 119.4 | 111.7 | |||||||||
Nearest degree of 72edo: | 12 | 11 | 10 | 9 | 8 | 8 | 7 | 7 | |||||||||
...in cents: | 200.0 | 183.3 | 166.7 | 150.0 | 133.3 | 133.3 | 116.7 | 116.7 |
Linear temperaments
Periods per octave | Generator | Names |
---|---|---|
1 | 1\72 | quincy |
1 | 5\72 | marvolo |
1 | 7\72 | miracle/benediction/manna |
1 | 11\72 | |
1 | 13\72 | |
1 | 17\72 | neominor |
1 | 19\72 | catakleismic |
1 | 23\72 | |
1 | 25\72 | sqrtphi |
1 | 29\72 | |
1 | 31\72 | marvo/zarvo |
1 | 35\72 | cotritone |
2 | 1\72 | |
2 | 5\72 | harry |
2 | 7\72 | |
2 | 11\72 | unidec/hendec |
2 | 13\72 | wizard/lizard/gizzard |
2 | 17\72 | |
3 | 1\72 | |
3 | 5\72 | tritikleismic |
3 | 7\72 | |
3 | 11\72 | mirkat |
4 | 1\72 | quadritikleismic |
4 | 5\72 | |
4 | 7\72 | |
6 | 1\72 | |
6 | 5\72 | |
8 | 1\72 | octoid |
8 | 2\72 | octowerck |
8 | 4\72 | |
9 | 1\72 | |
9 | 3\72 | ennealimmal/ennealimmic |
12 | 1\72 | compton |
18 | 1\72 | hemiennealimmal |
24 | 1\72 | hours |
36 | 1\72 |
Z function
72edo is the ninth zeta integral edo, as well as being a peak and gap edo, and the maximum value of the Z function in the region near 72 occurs at 71.9506, giving an octave of 1200.824 cents, the stretched octaves of the zeta tuning. Below is a plot of Z in the region around 72.
Music
Kotekant play by Gene Ward Smith
Twinkle canon – 72 edo by Claudi Meneghin
Lazy Sunday by Jake Freivald in the lazysunday scale.
June Gloom #9 by Prent Rodgers
External links
- Wikipedia article on 72edo
- OrthodoxWiki Article on Byzantine chant, which uses 72edo
- Wikipedia article on Joe Maneri (1927-2009)
- Ekmelic Music Society/Gesellschaft für Ekmelische Musik, a group of composers and researchers dedicated to 72edo music
- Rick Tagawa's 72edo site, including theory and composers' list
- Danny Wier, composer and musician who specializes in 72-edo