98edt: Difference between revisions
Jump to navigation
Jump to search
m Intro inter harm |
Rework |
||
Line 1: | Line 1: | ||
{{Infobox ET}} | {{Infobox ET}} | ||
{{ED intro}} | {{ED intro}} | ||
== Theory == | |||
98edt is related to [[62edo]], but with the [[3/1|twelfth]] rather than the [[2/1|octave]] being just. The octave is stretched by about 3.28 cents, same as in [[49edt]]. Unlike 62edo, which is [[consistent]] to the [[integer limit|8-integer-limit]], 98edt is only consistent to the 7-integer-limit. The [[prime harmonic]]s 2 to 23 are all tuned sharp, except for 3. | |||
=== Harmonics === | |||
{{Harmonics in equal|98|3|1|intervals=integer|columns=11}} | |||
{{Harmonics in equal|98|3|1|intervals=integer|columns=12|start=12|collapsed=true|title=Approximation of harmonics in 98edt (continued)}} | |||
== Intervals == | == Intervals == | ||
{{Interval table}} | {{Interval table}} | ||
== | == See also == | ||
* [[62edo]] – relative edo | |||
* [[160ed6]] – relative ed6 | |||
Revision as of 17:34, 30 March 2025
← 97edt | 98edt | 99edt → |
98 equal divisions of the tritave, perfect twelfth, or 3rd harmonic (abbreviated 98edt or 98ed3), is a nonoctave tuning system that divides the interval of 3/1 into 98 equal parts of about 19.4 ¢ each. Each step represents a frequency ratio of 31/98, or the 98th root of 3.
Theory
98edt is related to 62edo, but with the twelfth rather than the octave being just. The octave is stretched by about 3.28 cents, same as in 49edt. Unlike 62edo, which is consistent to the 8-integer-limit, 98edt is only consistent to the 7-integer-limit. The prime harmonics 2 to 23 are all tuned sharp, except for 3.
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +3.28 | +0.00 | +6.56 | +8.40 | +3.28 | +8.11 | -9.57 | +0.00 | -7.73 | +1.93 | +6.56 |
Relative (%) | +16.9 | +0.0 | +33.8 | +43.3 | +16.9 | +41.8 | -49.3 | +0.0 | -39.9 | +9.9 | +33.8 | |
Steps (reduced) |
62 (62) |
98 (0) |
124 (26) |
144 (46) |
160 (62) |
174 (76) |
185 (87) |
196 (0) |
205 (9) |
214 (18) |
222 (26) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +3.84 | -8.02 | +8.40 | -6.30 | +5.19 | +3.28 | +6.71 | -4.46 | +8.11 | +5.21 | +5.88 | -9.57 |
Relative (%) | +19.8 | -41.3 | +43.3 | -32.4 | +26.8 | +16.9 | +34.6 | -23.0 | +41.8 | +26.8 | +30.3 | -49.3 | |
Steps (reduced) |
229 (33) |
235 (39) |
242 (46) |
247 (51) |
253 (57) |
258 (62) |
263 (67) |
267 (71) |
272 (76) |
276 (80) |
280 (84) |
283 (87) |
Intervals
Steps | Cents | Hekts | Approximate ratios |
---|---|---|---|
0 | 0 | 0 | 1/1 |
1 | 19.4 | 13.3 | |
2 | 38.8 | 26.5 | 43/42, 44/43 |
3 | 58.2 | 39.8 | |
4 | 77.6 | 53.1 | 23/22 |
5 | 97 | 66.3 | 18/17 |
6 | 116.4 | 79.6 | 31/29 |
7 | 135.9 | 92.9 | |
8 | 155.3 | 106.1 | 23/21, 35/32 |
9 | 174.7 | 119.4 | 21/19 |
10 | 194.1 | 132.7 | 19/17, 28/25 |
11 | 213.5 | 145.9 | 26/23, 43/38 |
12 | 232.9 | 159.2 | 8/7 |
13 | 252.3 | 172.4 | 22/19 |
14 | 271.7 | 185.7 | |
15 | 291.1 | 199 | 13/11 |
16 | 310.5 | 212.2 | |
17 | 329.9 | 225.5 | 23/19 |
18 | 349.3 | 238.8 | 11/9 |
19 | 368.7 | 252 | 26/21 |
20 | 388.2 | 265.3 | 5/4 |
21 | 407.6 | 278.6 | 19/15, 43/34 |
22 | 427 | 291.8 | 32/25 |
23 | 446.4 | 305.1 | 22/17 |
24 | 465.8 | 318.4 | 17/13 |
25 | 485.2 | 331.6 | 41/31 |
26 | 504.6 | 344.9 | |
27 | 524 | 358.2 | 23/17 |
28 | 543.4 | 371.4 | 26/19, 37/27 |
29 | 562.8 | 384.7 | 18/13 |
30 | 582.2 | 398 | 7/5 |
31 | 601.6 | 411.2 | 17/12, 41/29 |
32 | 621 | 424.5 | 43/30 |
33 | 640.5 | 437.8 | |
34 | 659.9 | 451 | |
35 | 679.3 | 464.3 | |
36 | 698.7 | 477.6 | |
37 | 718.1 | 490.8 | |
38 | 737.5 | 504.1 | 23/15, 26/17 |
39 | 756.9 | 517.3 | |
40 | 776.3 | 530.6 | 36/23 |
41 | 795.7 | 543.9 | 19/12 |
42 | 815.1 | 557.1 | 8/5 |
43 | 834.5 | 570.4 | 34/21 |
44 | 853.9 | 583.7 | 18/11 |
45 | 873.3 | 596.9 | 43/26 |
46 | 892.8 | 610.2 | |
47 | 912.2 | 623.5 | 22/13, 39/23 |
48 | 931.6 | 636.7 | 12/7 |
49 | 951 | 650 | 26/15 |
50 | 970.4 | 663.3 | 7/4 |
51 | 989.8 | 676.5 | 23/13, 39/22 |
52 | 1009.2 | 689.8 | 34/19, 43/24 |
53 | 1028.6 | 703.1 | 38/21 |
54 | 1048 | 716.3 | 11/6 |
55 | 1067.4 | 729.6 | |
56 | 1086.8 | 742.9 | 15/8 |
57 | 1106.2 | 756.1 | 36/19 |
58 | 1125.6 | 769.4 | 23/12 |
59 | 1145.1 | 782.7 | |
60 | 1164.5 | 795.9 | |
61 | 1183.9 | 809.2 | |
62 | 1203.3 | 822.4 | |
63 | 1222.7 | 835.7 | |
64 | 1242.1 | 849 | 43/21 |
65 | 1261.5 | 862.2 | |
66 | 1280.9 | 875.5 | 44/21 |
67 | 1300.3 | 888.8 | 36/17 |
68 | 1319.7 | 902 | 15/7 |
69 | 1339.1 | 915.3 | 13/6 |
70 | 1358.5 | 928.6 | |
71 | 1377.9 | 941.8 | |
72 | 1397.4 | 955.1 | |
73 | 1416.8 | 968.4 | 34/15 |
74 | 1436.2 | 981.6 | 39/17 |
75 | 1455.6 | 994.9 | 44/19 |
76 | 1475 | 1008.2 | |
77 | 1494.4 | 1021.4 | |
78 | 1513.8 | 1034.7 | 12/5 |
79 | 1533.2 | 1048 | |
80 | 1552.6 | 1061.2 | 27/11 |
81 | 1572 | 1074.5 | |
82 | 1591.4 | 1087.8 | |
83 | 1610.8 | 1101 | 33/13, 38/15 |
84 | 1630.2 | 1114.3 | |
85 | 1649.7 | 1127.6 | |
86 | 1669.1 | 1140.8 | 21/8 |
87 | 1688.5 | 1154.1 | |
88 | 1707.9 | 1167.3 | |
89 | 1727.3 | 1180.6 | 19/7 |
90 | 1746.7 | 1193.9 | |
91 | 1766.1 | 1207.1 | |
92 | 1785.5 | 1220.4 | |
93 | 1804.9 | 1233.7 | 17/6 |
94 | 1824.3 | 1246.9 | 43/15 |
95 | 1843.7 | 1260.2 | |
96 | 1863.1 | 1273.5 | 44/15 |
97 | 1882.5 | 1286.7 | |
98 | 1902 | 1300 | 3/1 |