User:Lériendil/Third-superparticulars and semiparticulars by prime subgroup: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
No edit summary
Line 193: Line 193:


==== 7-add-one-limit (L7.p) ====
==== 7-add-one-limit (L7.p) ====
{| class="wikitable center-1 center-2 center-5 center-6"
|-
! rowspan="2" | Third-particular
! rowspan="2" | Subgroup
! colspan="2" | Comma
! rowspan="2" | Semiparticular
! rowspan="2" | Subgroup
! colspan="2" | Comma
|-
! Ratio
! Smonzo
! Ratio
! Smonzo
|-
|
|
|
|
| R9 = G23
| '''L11(-3)'''
| [[176/175]]
| {{monzo| 4 -2 -1 1 }}
|-
| G13
| '''L11(-3)'''
| [[56/55]]
| {{monzo| 3 -1 1 -1 }}
| R13
| [[11-limit|L11]]
| [[540/539]]
| {{monzo| 2 3 1 -2 -1 }}
|-
| G23 = R9
| '''L11(-3)'''
| [[176/175]]
| {{monzo| 4 -2 -1 1 }}
| R23 = S55
| [[11-limit|L11]]
| [[3025/3024]]
| {{monzo| -4 -3 2 -1 2 }}
|-
| G34
| [[11-limit|L11]]
| [[385/384]]
| {{monzo| -7 -1 1 1 1 }}
| R34 = S99
| [[11-limit|L11]]
| [[9801/9800]]
| {{monzo| -3 4 -2 -2 2 }}
|-
| G16
| L7.17
| [[85/84]]
| {{monzo| -2 -1 1 -1 1 }}
|
|
|
|
|-
| G19 = T15
| L7.17
| [[120/119]]
| {{monzo| 3 1 1 -1 -1 }}
| R19
| L7.17
| [[1701/1700]]
| {{monzo| -2 5 -2 1 -1 }}
|-
| G22
| '''2.5.7.23'''
| [[161/160]]
| {{monzo| -5 -1 1 1 }}
| R22
| L7.23
| [[2646/2645]]
| {{monzo| 1 3 -1 2 -2 }}
|-
| G47
| L7.23
| [[736/735]]
| {{monzo| 5 -1 -1 -2 1 }}
| R47 = S161
| L7.23
| [[25921/25920]]
| {{monzo| -6 -4 -1 2 2 }}
|-
| G29
| L7.31
| [[280/279]]
| {{monzo| 3 -2 1 1 -1 }}
| R29
| L7.31
| [[6076/6075]]
| {{monzo| 2 -2 -5 2 1 }}
|-
| G62
| L7.61
| [[1281/1280]]
| {{monzo| -8 1 -1 1 1 }}
| R62 = S244
| L7.61
| [[59536/59535]]
| {{monzo| 4 -5 -1 -2 2 }}
|-
| G82
| L7.83
| [[2241/2240]]
| {{monzo| -6 3 -1 -1 1 }}
| R82
| L7.83
| [[137781/137780]]
| {{monzo| -2 9 -1 1 -2 }}
|}


== See also ==
== See also ==
* [[User:Lériendil/Square_and_triangle_superparticulars_by_prime_subgroup|Square and triangle superparticulars by prime subgroup]]
* [[User:Lériendil/Square_and_triangle_superparticulars_by_prime_subgroup|Square and triangle superparticulars by prime subgroup]]

Revision as of 03:17, 26 July 2024

Some shorthand notation used here:

  • Sk stands for k^2/[(k-1)(k+1)] by standard convention (the kth square superparticular).
  • Gk stands for S(k-1)*Sk*S(k+1) (the kth third-particular).
  • Rk stands for S(k-1)/S(k+1) (the kth semiparticular).
  • Tk = Sk * S(k+1) stands for [k(k+1)/2]/[(k-1)(k+2)/2] (the kth triangle superparticular).
  • Lp refers to the p-limit, i.e. the subgroup of primes less than or equal to p.
  • Lp(-q) refers to the p limit with the prime q omitted: e.g. L17(-11) refers to the 2.3.5.7.13.17 subgroup; these omissions can be stacked so that L23(-5.17) refers to the group 2.3.7.11.13.19.23.

Note that not all members of Gk and Rk are superparticular. In particular, G(3k) is throdd-particular, and R(4k) is odd-particular. Such ratios will be excluded from consideration in this chart, though they will appear on companion no-twos and no-threes pages.

This list eventually aims to be complete to the 17-add-two-limit and the 29-add-one-limit, i.e. the union of the class of subgroups with at most one prime greater than 29, which is a superset of the 31-limit, and the class of subgroups with at most two primes greater than 17, which is a superset of the 23-limit.

2- and 3-prime subgroups (2.p, 2.3.p, and 2.5.p)

Note that the following lists are complete and the insertion of higher primes will add no new inclusions to them.

2-prime subgroups (2.p)

Third-particular Subgroup Comma
Ratio Smonzo
G4 = R3 2.5 5/4 [-2 1
G5 2.7 8/7 [3 -1

3-prime subgroups (2.3.p)

Third-particular Subgroup Comma Semiparticular Subgroup Comma
Ratio Smonzo Ratio Smonzo
G7 = S4 L5 16/15 [4 -1 -1 R7 = S9 L5 81/80 [-4 4 -1
R5 = T7 2.3.7 28/27 [2 -3 1
G10 2.3.11 33/32 [-5 1 1 R10 2.3.11 243/242 [-1 5 -2

3-prime subgroups (2.5.p)

Superparticular Subgroup Comma
Ratio Smonzo
R6 2.5.7 50/49 [1 2 -2
G14 2.5.13 65/64 [-6 1 1

4-prime subgroups with threes

Note that the following lists are complete and the insertion of higher primes will add no new inclusions to them.

5-add-one-limit (L5.p)

Third-particular Subgroup Comma Semiparticular Subgroup Comma
Ratio Smonzo Ratio Smonzo
G8 = T6 L7 21/20 [-2 1 -1 1
G26 = S15 L7 225/224 [-5 2 2 -1 R26 L7 4375/4374 [-1 -7 4 1
G11 L5.13 40/39 [3 -1 1 -1 R11 = T25 L5.13 325/324 [-2 -4 2 1
R14 = S26 L5.13 676/675 [2 -3 -2 2
G17 L5.19 96/95 [5 1 -1 -1 R17 L5.19 1216/1215 [6 -5 -1 1

2.3.13.p subgroups

Third-particular Subgroup Comma Semiparticular Subgroup Comma
Ratio Smonzo Ratio Smonzo
G25 2.3.13.23 208/207 [4 -2 1 -1 R25 2.3.13.23 3888/3887 [4 5 -2 -1

4-prime no-threes subgroups and 5-prime subgroups

5-add-two-limit (L5.p.q)

7-add-one-limit (L7.p)

Third-particular Subgroup Comma Semiparticular Subgroup Comma
Ratio Smonzo Ratio Smonzo
R9 = G23 L11(-3) 176/175 [4 -2 -1 1
G13 L11(-3) 56/55 [3 -1 1 -1 R13 L11 540/539 [2 3 1 -2 -1
G23 = R9 L11(-3) 176/175 [4 -2 -1 1 R23 = S55 L11 3025/3024 [-4 -3 2 -1 2
G34 L11 385/384 [-7 -1 1 1 1 R34 = S99 L11 9801/9800 [-3 4 -2 -2 2
G16 L7.17 85/84 [-2 -1 1 -1 1
G19 = T15 L7.17 120/119 [3 1 1 -1 -1 R19 L7.17 1701/1700 [-2 5 -2 1 -1
G22 2.5.7.23 161/160 [-5 -1 1 1 R22 L7.23 2646/2645 [1 3 -1 2 -2
G47 L7.23 736/735 [5 -1 -1 -2 1 R47 = S161 L7.23 25921/25920 [-6 -4 -1 2 2
G29 L7.31 280/279 [3 -2 1 1 -1 R29 L7.31 6076/6075 [2 -2 -5 2 1
G62 L7.61 1281/1280 [-8 1 -1 1 1 R62 = S244 L7.61 59536/59535 [4 -5 -1 -2 2
G82 L7.83 2241/2240 [-6 3 -1 -1 1 R82 L7.83 137781/137780 [-2 9 -1 1 -2

See also