Ed12: Difference between revisions
Jump to navigation
Jump to search
ArrowHead294 (talk | contribs) No edit summary |
Made heading style consistent with other wiki pages; added table |
||
Line 1: | Line 1: | ||
'''Ed12''' means '''Division of the Twelfth Harmonic ([[12/1]]) into n equal parts'''. | '''Ed12''' means '''Division of the Twelfth Harmonic ([[12/1]]) into n equal parts'''. | ||
= | == Overview == | ||
The twelfth harmonic is particularly wide as far as equivalences go. There are (at absolute most) ~3.1 dodecataves within the human hearing range; imagine if that were the case with octaves. If one does indeed deal with dodecatave equivalence, this fact shapes one's musical approach dramatically. Also, the ed12-[[edo]] correspondences fall particularly close to the harmonic series of the NTSC or PAL-M color subcarrier: | The twelfth harmonic is particularly wide as far as equivalences go. There are (at absolute most) ~3.1 dodecataves within the human hearing range; imagine if that were the case with octaves. If one does indeed deal with dodecatave equivalence, this fact shapes one's musical approach dramatically. Also, the ed12-[[edo]] correspondences fall particularly close to the harmonic series of the NTSC or PAL-M color subcarrier: | ||
Line 291: | Line 291: | ||
|200.234216 | |200.234216 | ||
|} | |} | ||
== Table of Ed12s == | |||
=== 0…499 === | |||
{| class="wikitable center-all" | |||
|+ style=white-space:nowrap | 0…99 | |||
| [[0ed12|0]] | |||
| [[1ed12|1]] | |||
| [[2ed12|2]] | |||
| [[3ed12|3]] | |||
| [[4ed12|4]] | |||
| [[5ed12|5]] | |||
| [[6ed12|6]] | |||
| [[7ed12|7]] | |||
| [[8ed12|8]] | |||
| [[9ed12|9]] | |||
|- | |||
| [[10ed12|10]] | |||
| [[11ed12|11]] | |||
| [[12ed12|12]] | |||
| [[13ed12|13]] | |||
| [[14ed12|14]] | |||
| [[15ed12|15]] | |||
| [[16ed12|16]] | |||
| [[17ed12|17]] | |||
| [[18ed12|18]] | |||
| [[19ed12|19]] | |||
|- | |||
| [[20ed12|20]] | |||
| [[21ed12|21]] | |||
| [[22ed12|22]] | |||
| [[23ed12|23]] | |||
| [[24ed12|24]] | |||
| [[25ed12|25]] | |||
| [[26ed12|26]] | |||
| [[27ed12|27]] | |||
| [[28ed12|28]] | |||
| [[29ed12|29]] | |||
|- | |||
| [[30ed12|30]] | |||
| [[31ed12|31]] | |||
| [[32ed12|32]] | |||
| [[33ed12|33]] | |||
| [[34ed12|34]] | |||
| [[35ed12|35]] | |||
| [[36ed12|36]] | |||
| [[37ed12|37]] | |||
| [[38ed12|38]] | |||
| [[39ed12|39]] | |||
|- | |||
| [[40ed12|40]] | |||
| [[41ed12|41]] | |||
| [[42ed12|42]] | |||
| [[43ed12|43]] | |||
| [[44ed12|44]] | |||
| [[45ed12|45]] | |||
| [[46ed12|46]] | |||
| [[47ed12|47]] | |||
| [[48ed12|48]] | |||
| [[49ed12|49]] | |||
|- | |||
| [[50ed12|50]] | |||
| [[51ed12|51]] | |||
| [[52ed12|52]] | |||
| [[53ed12|53]] | |||
| [[54ed12|54]] | |||
| [[55ed12|55]] | |||
| [[56ed12|56]] | |||
| [[57ed12|57]] | |||
| [[58ed12|58]] | |||
| [[59ed12|59]] | |||
|- | |||
| [[60ed12|60]] | |||
| [[61ed12|61]] | |||
| [[62ed12|62]] | |||
| [[63ed12|63]] | |||
| [[64ed12|64]] | |||
| [[65ed12|65]] | |||
| [[66ed12|66]] | |||
| [[67ed12|67]] | |||
| [[68ed12|68]] | |||
| [[69ed12|69]] | |||
|- | |||
| [[70ed12|70]] | |||
| [[71ed12|71]] | |||
| [[72ed12|72]] | |||
| [[73ed12|73]] | |||
| [[74ed12|74]] | |||
| [[75ed12|75]] | |||
| [[76ed12|76]] | |||
| [[77ed12|77]] | |||
| [[78ed12|78]] | |||
| [[79ed12|79]] | |||
|- | |||
| [[80ed12|80]] | |||
| [[81ed12|81]] | |||
| [[82ed12|82]] | |||
| [[83ed12|83]] | |||
| [[84ed12|84]] | |||
| [[85ed12|85]] | |||
| [[86ed12|86]] | |||
| [[87ed12|87]] | |||
| [[88ed12|88]] | |||
| [[89ed12|89]] | |||
|- | |||
| [[90ed12|90]] | |||
| [[91ed12|91]] | |||
| [[92ed12|92]] | |||
| [[93ed12|93]] | |||
| [[94ed12|94]] | |||
| [[95ed12|95]] | |||
| [[96ed12|96]] | |||
| [[97ed12|97]] | |||
| [[98ed12|98]] | |||
| [[99ed12|99]] | |||
|} | |||
{| class="wikitable center-all mw-collapsible mw-collapsed" | |||
|+ style=white-space:nowrap | 100…199 | |||
| [[100ed12|100]] | |||
| [[101ed12|101]] | |||
| [[102ed12|102]] | |||
| [[103ed12|103]] | |||
| [[104ed12|104]] | |||
| [[105ed12|105]] | |||
| [[106ed12|106]] | |||
| [[107ed12|107]] | |||
| [[108ed12|108]] | |||
| [[109ed12|109]] | |||
|- | |||
| [[110ed12|110]] | |||
| [[111ed12|111]] | |||
| [[112ed12|112]] | |||
| [[113ed12|113]] | |||
| [[114ed12|114]] | |||
| [[115ed12|115]] | |||
| [[116ed12|116]] | |||
| [[117ed12|117]] | |||
| [[118ed12|118]] | |||
| [[119ed12|119]] | |||
|- | |||
| [[120ed12|120]] | |||
| [[121ed12|121]] | |||
| [[122ed12|122]] | |||
| [[123ed12|123]] | |||
| [[124ed12|124]] | |||
| [[125ed12|125]] | |||
| [[126ed12|126]] | |||
| [[127ed12|127]] | |||
| [[128ed12|128]] | |||
| [[129ed12|129]] | |||
|- | |||
| [[130ed12|130]] | |||
| [[131ed12|131]] | |||
| [[132ed12|132]] | |||
| [[133ed12|133]] | |||
| [[134ed12|134]] | |||
| [[135ed12|135]] | |||
| [[136ed12|136]] | |||
| [[137ed12|137]] | |||
| [[138ed12|138]] | |||
| [[139ed12|139]] | |||
|- | |||
| [[140ed12|140]] | |||
| [[141ed12|141]] | |||
| [[142ed12|142]] | |||
| [[143ed12|143]] | |||
| [[144ed12|144]] | |||
| [[145ed12|145]] | |||
| [[146ed12|146]] | |||
| [[147ed12|147]] | |||
| [[148ed12|148]] | |||
| [[149ed12|149]] | |||
|- | |||
| [[150ed12|150]] | |||
| [[151ed12|151]] | |||
| [[152ed12|152]] | |||
| [[153ed12|153]] | |||
| [[154ed12|154]] | |||
| [[155ed12|155]] | |||
| [[156ed12|156]] | |||
| [[157ed12|157]] | |||
| [[158ed12|158]] | |||
| [[159ed12|159]] | |||
|- | |||
| [[160ed12|160]] | |||
| [[161ed12|161]] | |||
| [[162ed12|162]] | |||
| [[163ed12|163]] | |||
| [[164ed12|164]] | |||
| [[165ed12|165]] | |||
| [[166ed12|166]] | |||
| [[167ed12|167]] | |||
| [[168ed12|168]] | |||
| [[169ed12|169]] | |||
|- | |||
| [[170ed12|170]] | |||
| [[171ed12|171]] | |||
| [[172ed12|172]] | |||
| [[173ed12|173]] | |||
| [[174ed12|174]] | |||
| [[175ed12|175]] | |||
| [[176ed12|176]] | |||
| [[177ed12|177]] | |||
| [[178ed12|178]] | |||
| [[179ed12|179]] | |||
|- | |||
| [[180ed12|180]] | |||
| [[181ed12|181]] | |||
| [[182ed12|182]] | |||
| [[183ed12|183]] | |||
| [[184ed12|184]] | |||
| [[185ed12|185]] | |||
| [[186ed12|186]] | |||
| [[187ed12|187]] | |||
| [[188ed12|188]] | |||
| [[189ed12|189]] | |||
|- | |||
| [[190ed12|190]] | |||
| [[191ed12|191]] | |||
| [[192ed12|192]] | |||
| [[193ed12|193]] | |||
| [[194ed12|194]] | |||
| [[195ed12|195]] | |||
| [[196ed12|196]] | |||
| [[197ed12|197]] | |||
| [[198ed12|198]] | |||
| [[199ed12|199]] | |||
|} | |||
{| class="wikitable center-all mw-collapsible mw-collapsed" | |||
|+ style=white-space:nowrap | 200…299 | |||
| [[200ed12|200]] | |||
| [[201ed12|201]] | |||
| [[202ed12|202]] | |||
| [[203ed12|203]] | |||
| [[204ed12|204]] | |||
| [[205ed12|205]] | |||
| [[206ed12|206]] | |||
| [[207ed12|207]] | |||
| [[208ed12|208]] | |||
| [[209ed12|209]] | |||
|- | |||
| [[210ed12|210]] | |||
| [[211ed12|211]] | |||
| [[212ed12|212]] | |||
| [[213ed12|213]] | |||
| [[214ed12|214]] | |||
| [[215ed12|215]] | |||
| [[216ed12|216]] | |||
| [[217ed12|217]] | |||
| [[218ed12|218]] | |||
| [[219ed12|219]] | |||
|- | |||
| [[220ed12|220]] | |||
| [[221ed12|221]] | |||
| [[222ed12|222]] | |||
| [[223ed12|223]] | |||
| [[224ed12|224]] | |||
| [[225ed12|225]] | |||
| [[226ed12|226]] | |||
| [[227ed12|227]] | |||
| [[228ed12|228]] | |||
| [[229ed12|229]] | |||
|- | |||
| [[230ed12|230]] | |||
| [[231ed12|231]] | |||
| [[232ed12|232]] | |||
| [[233ed12|233]] | |||
| [[234ed12|234]] | |||
| [[235ed12|235]] | |||
| [[236ed12|236]] | |||
| [[237ed12|237]] | |||
| [[238ed12|238]] | |||
| [[239ed12|239]] | |||
|- | |||
| [[240ed12|240]] | |||
| [[241ed12|241]] | |||
| [[242ed12|242]] | |||
| [[243ed12|243]] | |||
| [[244ed12|244]] | |||
| [[245ed12|245]] | |||
| [[246ed12|246]] | |||
| [[247ed12|247]] | |||
| [[248ed12|248]] | |||
| [[249ed12|249]] | |||
|- | |||
| [[250ed12|250]] | |||
| [[251ed12|251]] | |||
| [[252ed12|252]] | |||
| [[253ed12|253]] | |||
| [[254ed12|254]] | |||
| [[255ed12|255]] | |||
| [[256ed12|256]] | |||
| [[257ed12|257]] | |||
| [[258ed12|258]] | |||
| [[259ed12|259]] | |||
|- | |||
| [[260ed12|260]] | |||
| [[261ed12|261]] | |||
| [[262ed12|262]] | |||
| [[263ed12|263]] | |||
| [[264ed12|264]] | |||
| [[265ed12|265]] | |||
| [[266ed12|266]] | |||
| [[267ed12|267]] | |||
| [[268ed12|268]] | |||
| [[269ed12|269]] | |||
|- | |||
| [[270ed12|270]] | |||
| [[271ed12|271]] | |||
| [[272ed12|272]] | |||
| [[273ed12|273]] | |||
| [[274ed12|274]] | |||
| [[275ed12|275]] | |||
| [[276ed12|276]] | |||
| [[277ed12|277]] | |||
| [[278ed12|278]] | |||
| [[279ed12|279]] | |||
|- | |||
| [[280ed12|280]] | |||
| [[281ed12|281]] | |||
| [[282ed12|282]] | |||
| [[283ed12|283]] | |||
| [[284ed12|284]] | |||
| [[285ed12|285]] | |||
| [[286ed12|286]] | |||
| [[287ed12|287]] | |||
| [[288ed12|288]] | |||
| [[289ed12|289]] | |||
|- | |||
| [[290ed12|290]] | |||
| [[291ed12|291]] | |||
| [[292ed12|292]] | |||
| [[293ed12|293]] | |||
| [[294ed12|294]] | |||
| [[295ed12|295]] | |||
| [[296ed12|296]] | |||
| [[297ed12|297]] | |||
| [[298ed12|298]] | |||
| [[299ed12|299]] | |||
|} | |||
{| class="wikitable center-all mw-collapsible mw-collapsed" | |||
|+ style=white-space:nowrap | 300…399 | |||
| [[300ed12|300]] | |||
| [[301ed12|301]] | |||
| [[302ed12|302]] | |||
| [[303ed12|303]] | |||
| [[304ed12|304]] | |||
| [[305ed12|305]] | |||
| [[306ed12|306]] | |||
| [[307ed12|307]] | |||
| [[308ed12|308]] | |||
| [[309ed12|309]] | |||
|- | |||
| [[310ed12|310]] | |||
| [[311ed12|311]] | |||
| [[312ed12|312]] | |||
| [[313ed12|313]] | |||
| [[314ed12|314]] | |||
| [[315ed12|315]] | |||
| [[316ed12|316]] | |||
| [[317ed12|317]] | |||
| [[318ed12|318]] | |||
| [[319ed12|319]] | |||
|- | |||
| [[320ed12|320]] | |||
| [[321ed12|321]] | |||
| [[322ed12|322]] | |||
| [[323ed12|323]] | |||
| [[324ed12|324]] | |||
| [[325ed12|325]] | |||
| [[326ed12|326]] | |||
| [[327ed12|327]] | |||
| [[328ed12|328]] | |||
| [[329ed12|329]] | |||
|- | |||
| [[330ed12|330]] | |||
| [[331ed12|331]] | |||
| [[332ed12|332]] | |||
| [[333ed12|333]] | |||
| [[334ed12|334]] | |||
| [[335ed12|335]] | |||
| [[336ed12|336]] | |||
| [[337ed12|337]] | |||
| [[338ed12|338]] | |||
| [[339ed12|339]] | |||
|- | |||
| [[340ed12|340]] | |||
| [[341ed12|341]] | |||
| [[342ed12|342]] | |||
| [[343ed12|343]] | |||
| [[344ed12|344]] | |||
| [[345ed12|345]] | |||
| [[346ed12|346]] | |||
| [[347ed12|347]] | |||
| [[348ed12|348]] | |||
| [[349ed12|349]] | |||
|- | |||
| [[350ed12|350]] | |||
| [[351ed12|351]] | |||
| [[352ed12|352]] | |||
| [[353ed12|353]] | |||
| [[354ed12|354]] | |||
| [[355ed12|355]] | |||
| [[356ed12|356]] | |||
| [[357ed12|357]] | |||
| [[358ed12|358]] | |||
| [[359ed12|359]] | |||
|- | |||
| [[360ed12|360]] | |||
| [[361ed12|361]] | |||
| [[362ed12|362]] | |||
| [[363ed12|363]] | |||
| [[364ed12|364]] | |||
| [[365ed12|365]] | |||
| [[366ed12|366]] | |||
| [[367ed12|367]] | |||
| [[368ed12|368]] | |||
| [[369ed12|369]] | |||
|- | |||
| [[370ed12|370]] | |||
| [[371ed12|371]] | |||
| [[372ed12|372]] | |||
| [[373ed12|373]] | |||
| [[374ed12|374]] | |||
| [[375ed12|375]] | |||
| [[376ed12|376]] | |||
| [[377ed12|377]] | |||
| [[378ed12|378]] | |||
| [[379ed12|379]] | |||
|- | |||
| [[380ed12|380]] | |||
| [[381ed12|381]] | |||
| [[382ed12|382]] | |||
| [[383ed12|383]] | |||
| [[384ed12|384]] | |||
| [[385ed12|385]] | |||
| [[386ed12|386]] | |||
| [[387ed12|387]] | |||
| [[388ed12|388]] | |||
| [[389ed12|389]] | |||
|- | |||
| [[390ed12|390]] | |||
| [[391ed12|391]] | |||
| [[392ed12|392]] | |||
| [[393ed12|393]] | |||
| [[394ed12|394]] | |||
| [[395ed12|395]] | |||
| [[396ed12|396]] | |||
| [[397ed12|397]] | |||
| [[398ed12|398]] | |||
| [[399ed12|399]] | |||
|} | |||
{| class="wikitable center-all mw-collapsible mw-collapsed" | |||
|+ style=white-space:nowrap | 400…499 | |||
| [[400ed12|400]] | |||
| [[401ed12|401]] | |||
| [[402ed12|402]] | |||
| [[403ed12|403]] | |||
| [[404ed12|404]] | |||
| [[405ed12|405]] | |||
| [[406ed12|406]] | |||
| [[407ed12|407]] | |||
| [[408ed12|408]] | |||
| [[409ed12|409]] | |||
|- | |||
| [[410ed12|410]] | |||
| [[411ed12|411]] | |||
| [[412ed12|412]] | |||
| [[413ed12|413]] | |||
| [[414ed12|414]] | |||
| [[415ed12|415]] | |||
| [[416ed12|416]] | |||
| [[417ed12|417]] | |||
| [[418ed12|418]] | |||
| [[419ed12|419]] | |||
|- | |||
| [[420ed12|420]] | |||
| [[421ed12|421]] | |||
| [[422ed12|422]] | |||
| [[423ed12|423]] | |||
| [[424ed12|424]] | |||
| [[425ed12|425]] | |||
| [[426ed12|426]] | |||
| [[427ed12|427]] | |||
| [[428ed12|428]] | |||
| [[429ed12|429]] | |||
|- | |||
| [[430ed12|430]] | |||
| [[431ed12|431]] | |||
| [[432ed12|432]] | |||
| [[433ed12|433]] | |||
| [[434ed12|434]] | |||
| [[435ed12|435]] | |||
| [[436ed12|436]] | |||
| [[437ed12|437]] | |||
| [[438ed12|438]] | |||
| [[439ed12|439]] | |||
|- | |||
| [[440ed12|440]] | |||
| [[441ed12|441]] | |||
| [[442ed12|442]] | |||
| [[443ed12|443]] | |||
| [[444ed12|444]] | |||
| [[445ed12|445]] | |||
| [[446ed12|446]] | |||
| [[447ed12|447]] | |||
| [[448ed12|448]] | |||
| [[449ed12|449]] | |||
|- | |||
| [[450ed12|450]] | |||
| [[451ed12|451]] | |||
| [[452ed12|452]] | |||
| [[453ed12|453]] | |||
| [[454ed12|454]] | |||
| [[455ed12|455]] | |||
| [[456ed12|456]] | |||
| [[457ed12|457]] | |||
| [[458ed12|458]] | |||
| [[459ed12|459]] | |||
|- | |||
| [[460ed12|460]] | |||
| [[461ed12|461]] | |||
| [[462ed12|462]] | |||
| [[463ed12|463]] | |||
| [[464ed12|464]] | |||
| [[465ed12|465]] | |||
| [[466ed12|466]] | |||
| [[467ed12|467]] | |||
| [[468ed12|468]] | |||
| [[469ed12|469]] | |||
|- | |||
| [[470ed12|470]] | |||
| [[471ed12|471]] | |||
| [[472ed12|472]] | |||
| [[473ed12|473]] | |||
| [[474ed12|474]] | |||
| [[475ed12|475]] | |||
| [[476ed12|476]] | |||
| [[477ed12|477]] | |||
| [[478ed12|478]] | |||
| [[479ed12|479]] | |||
|- | |||
| [[480ed12|480]] | |||
| [[481ed12|481]] | |||
| [[482ed12|482]] | |||
| [[483ed12|483]] | |||
| [[484ed12|484]] | |||
| [[485ed12|485]] | |||
| [[486ed12|486]] | |||
| [[487ed12|487]] | |||
| [[488ed12|488]] | |||
| [[489ed12|489]] | |||
|- | |||
| [[490ed12|490]] | |||
| [[491ed12|491]] | |||
| [[492ed12|492]] | |||
| [[493ed12|493]] | |||
| [[494ed12|494]] | |||
| [[495ed12|495]] | |||
| [[496ed12|496]] | |||
| [[497ed12|497]] | |||
| [[498ed12|498]] | |||
| [[499ed12|499]] | |||
|} | |||
[[Category:Edonoi]] | [[Category:Edonoi]] | ||
[[Category:Ed12]] | [[Category:Ed12]] |
Revision as of 22:24, 18 September 2024
Ed12 means Division of the Twelfth Harmonic (12/1) into n equal parts.
Overview
The twelfth harmonic is particularly wide as far as equivalences go. There are (at absolute most) ~3.1 dodecataves within the human hearing range; imagine if that were the case with octaves. If one does indeed deal with dodecatave equivalence, this fact shapes one's musical approach dramatically. Also, the ed12-edo correspondences fall particularly close to the harmonic series of the NTSC or PAL-M color subcarrier:
edo | ed12 | NTSC*n | PAL-M*n |
---|---|---|---|
1 | 3.5849625 | 3.579545 MHz | 3.575611 MHz |
2 | 7.169925 | 7.158909 | 7.151222 |
3 | 10.7548875 | 10.7383635 | 10.726833 |
4 | 14.33985 | 14.317818 | 14.302444 |
5 | 17.9248125 | 17.8972725 | 17.878055 |
6 | 21.509775 | 21.476727 | 21.453666 |
7 | 25.0947375 | 25.0561815 | 25.029277 |
8 | 28.6797 | 28.635636 | 28.604888 |
9 | 32.2646625 | 32.2150905 | 32.180299 |
10 | 35.849625 | 35.79545 | 35.75611 |
11 | 39.4345875 | 39.374 | 39.331521 |
12 | 43.01955 | 42.953454 | 42.907332 |
13 | 46.6045125 | 46.5329085 | 46.482743 |
14 | 50.189475 | 50.112363 | 50.058554 |
15 | 53.7744375 | 53.6918175 | 53.634265 |
16 | 57.3594 | 57.271272 | 57.209776 |
17 | 60.9443625 | 60.8507265 | 60.785487 |
18 | 64.529325 | 64.430181 | 64.360598 |
19 | 68.1142875 | 68.0096355 | 67.936709 |
20 | 71.69925 | 71.58909 | 71.51222 |
21 | 75.2842125 | 75.1685445 | 75.087931 |
22 | 78.869175 | 78.747999 | 78.663442 |
23 | 82.4541375 | 82.3274535 | 82.239153 |
24 | 86.0391 | 85.906908 | 85.814664 |
25 | 89.6240625 | 89.4863625 | 89.390375 |
26 | 93.209025 | 93.065817 | 92.965886 |
27 | 96.7939875 | 96.6452715 | 96.541597 |
28 | 100.37895 | 100.224726 | 100.117108 |
29 | 103.9639125 | 103.8041805 | 103.692819 |
30 | 107.548875 | 107.38365 | 107.28633 |
31 | 111.1338375 | 110.9630895 | 110.894041 |
32 | 114.7188 | 114.542544 | 114.437552 |
33 | 118.3037625 | 118.1219985 | 118.045263 |
34 | 121.888725 | 121.701453 | 121.588774 |
35 | 125.4736875 | 125.2809075 | 125.096485 |
36 | 129.05865 | 128.860362 | 128.739296 |
37 | 132.6436125 | 132.4398165 | 132.247707 |
38 | 136.228575 | 136.019271 | 135.860518 |
39 | 139.8135375 | 139.5987255 | 135.398929 |
40 | 143.3985 | 143.17818 | 143.02444 |
41 | 146.41815 | 146.7576345 | 146.600151 |
42 | 150.568425 | 150.337089 | 150.175862 |
43 | 154.0533875 | 153.9165435 | 153.751373 |
44 | 157.73835 | 157.495998 | 157.326884 |
45 | 161.3233125 | 161.0754525 | 160.902595 |
46 | 164.908275 | 164.654907 | 164.478306 |
47 | 168.4932375 | 168.2343615 | 168.053817 |
48 | 172.0782 | 171.813816 | 171.629328 |
49 | 175.6631625 | 175.3932705 | 175.205039 |
50 | 179.248125 | 178.972725 | 178.78075 |
51 | 182.8330875 | 182.5521795 | 182.356261 |
52 | 186.41805 | 186.131634 | 185.931772 |
53 | 190.003125 | 189.7110885 | 189.507483 |
54 | 193.597975 | 193.290543 | 193.083194 |
55 | 197.1729375 | 196.869975 | 196.658705 |
56 | 200.7579 | 200.449452 | 200.234216 |
Table of Ed12s
0…499
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 |
20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 |
30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 |
40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 |
50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 |
60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 |
70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 |
80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 |
90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 |
100 | 101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 |
110 | 111 | 112 | 113 | 114 | 115 | 116 | 117 | 118 | 119 |
120 | 121 | 122 | 123 | 124 | 125 | 126 | 127 | 128 | 129 |
130 | 131 | 132 | 133 | 134 | 135 | 136 | 137 | 138 | 139 |
140 | 141 | 142 | 143 | 144 | 145 | 146 | 147 | 148 | 149 |
150 | 151 | 152 | 153 | 154 | 155 | 156 | 157 | 158 | 159 |
160 | 161 | 162 | 163 | 164 | 165 | 166 | 167 | 168 | 169 |
170 | 171 | 172 | 173 | 174 | 175 | 176 | 177 | 178 | 179 |
180 | 181 | 182 | 183 | 184 | 185 | 186 | 187 | 188 | 189 |
190 | 191 | 192 | 193 | 194 | 195 | 196 | 197 | 198 | 199 |
200 | 201 | 202 | 203 | 204 | 205 | 206 | 207 | 208 | 209 |
210 | 211 | 212 | 213 | 214 | 215 | 216 | 217 | 218 | 219 |
220 | 221 | 222 | 223 | 224 | 225 | 226 | 227 | 228 | 229 |
230 | 231 | 232 | 233 | 234 | 235 | 236 | 237 | 238 | 239 |
240 | 241 | 242 | 243 | 244 | 245 | 246 | 247 | 248 | 249 |
250 | 251 | 252 | 253 | 254 | 255 | 256 | 257 | 258 | 259 |
260 | 261 | 262 | 263 | 264 | 265 | 266 | 267 | 268 | 269 |
270 | 271 | 272 | 273 | 274 | 275 | 276 | 277 | 278 | 279 |
280 | 281 | 282 | 283 | 284 | 285 | 286 | 287 | 288 | 289 |
290 | 291 | 292 | 293 | 294 | 295 | 296 | 297 | 298 | 299 |
300 | 301 | 302 | 303 | 304 | 305 | 306 | 307 | 308 | 309 |
310 | 311 | 312 | 313 | 314 | 315 | 316 | 317 | 318 | 319 |
320 | 321 | 322 | 323 | 324 | 325 | 326 | 327 | 328 | 329 |
330 | 331 | 332 | 333 | 334 | 335 | 336 | 337 | 338 | 339 |
340 | 341 | 342 | 343 | 344 | 345 | 346 | 347 | 348 | 349 |
350 | 351 | 352 | 353 | 354 | 355 | 356 | 357 | 358 | 359 |
360 | 361 | 362 | 363 | 364 | 365 | 366 | 367 | 368 | 369 |
370 | 371 | 372 | 373 | 374 | 375 | 376 | 377 | 378 | 379 |
380 | 381 | 382 | 383 | 384 | 385 | 386 | 387 | 388 | 389 |
390 | 391 | 392 | 393 | 394 | 395 | 396 | 397 | 398 | 399 |
400 | 401 | 402 | 403 | 404 | 405 | 406 | 407 | 408 | 409 |
410 | 411 | 412 | 413 | 414 | 415 | 416 | 417 | 418 | 419 |
420 | 421 | 422 | 423 | 424 | 425 | 426 | 427 | 428 | 429 |
430 | 431 | 432 | 433 | 434 | 435 | 436 | 437 | 438 | 439 |
440 | 441 | 442 | 443 | 444 | 445 | 446 | 447 | 448 | 449 |
450 | 451 | 452 | 453 | 454 | 455 | 456 | 457 | 458 | 459 |
460 | 461 | 462 | 463 | 464 | 465 | 466 | 467 | 468 | 469 |
470 | 471 | 472 | 473 | 474 | 475 | 476 | 477 | 478 | 479 |
480 | 481 | 482 | 483 | 484 | 485 | 486 | 487 | 488 | 489 |
490 | 491 | 492 | 493 | 494 | 495 | 496 | 497 | 498 | 499 |