32ed12

From Xenharmonic Wiki
Jump to navigation Jump to search
← 31ed12 32ed12 33ed12 →
Prime factorization 25
Step size 134.436¢ 
Octave 9\32ed12 (1209.92¢)
Twelfth 14\32ed12 (1882.11¢) (→7\16ed12)
Consistency limit 8
Distinct consistency limit 6

32 equal divisions of the 12th harmonic (abbreviated 32ed12) is a nonoctave tuning system that divides the interval of 12/1 into 32 equal parts of about 134⁠ ⁠¢ each. Each step represents a frequency ratio of 121/32, or the 32nd root of 12.

32ed12 is similar to 9edo, but has the 12/1 tuned just instead of the octave, which stretches the octave by 9.9 ¢. It also approximates Pelog tunings in Indonesian gamelan music very well, since Pelog is well-approximated by 9edo with stretched octaves.

Intervals

Steps Cents Approximate ratios
0 0 1/1
1 134.4 13/12, 14/13
2 268.9 7/6, 27/23
3 403.3 19/15, 24/19
4 537.7 15/11, 19/14, 26/19
5 672.2 22/15, 28/19
6 806.6 8/5, 27/17
7 941.1 12/7, 19/11
8 1075.5 13/7, 28/15
9 1209.9
10 1344.4 13/6, 24/11
11 1478.8
12 1613.2 28/11
13 1747.7 11/4
14 1882.1
15 2016.5 16/5
16 2151
17 2285.4 15/4
18 2419.8
19 2554.3
20 2688.7 19/4
21 2823.2
22 2957.6 11/2
23 3092
24 3226.5
25 3360.9 7/1
26 3495.3 15/2
27 3629.8
28 3764.2
29 3898.6 19/2
30 4033.1
31 4167.5
32 4302 12/1

Harmonics

Approximation of harmonics in 32ed12
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) +9.9 -19.8 +19.8 +36.8 -9.9 -7.9 +29.8 -39.7 +46.8 +16.2 +0.0
Relative (%) +7.4 -14.8 +14.8 +27.4 -7.4 -5.9 +22.1 -29.5 +34.8 +12.1 +0.0
Steps
(reduced)
9
(9)
14
(14)
18
(18)
21
(21)
23
(23)
25
(25)
27
(27)
28
(28)
30
(30)
31
(31)
32
(0)
Approximation of harmonics in 32ed12
Harmonic 13 14 15 16 17 18 19 20 21 22 23
Error Absolute (¢) -4.1 +2.0 +17.0 +39.7 -65.3 -29.8 +11.1 +56.7 -27.8 +26.1 -50.8
Relative (%) -3.1 +1.5 +12.6 +29.5 -48.5 -22.1 +8.2 +42.2 -20.7 +19.4 -37.8
Steps
(reduced)
33
(1)
34
(2)
35
(3)
36
(4)
36
(4)
37
(5)
38
(6)
39
(7)
39
(7)
40
(8)
40
(8)