36ed12

From Xenharmonic Wiki
Jump to navigation Jump to search
← 35ed12 36ed12 37ed12 →
Prime factorization 22 × 32
Step size 119.499 ¢ 
Octave 10\36ed12 (1194.99 ¢) (→ 5\18ed12)
Twelfth 16\36ed12 (1911.98 ¢) (→ 4\9ed12)
Consistency limit 9
Distinct consistency limit 5
Special properties

36 equal divisions of the 12th harmonic (abbreviated 36ed12) is a nonoctave tuning system that divides the interval of 12/1 into 36 equal parts of about 119 ¢ each. Each step represents a frequency ratio of 121/36, or the 36th root of 12.

Interval table

Steps Cents Approximate ratios
0 0 1/1
1 119.5 15/14, 16/15, 29/27
2 239 8/7, 23/20
3 358.5 16/13, 21/17, 27/22
4 478 21/16, 29/22
5 597.5 17/12, 24/17
6 717
7 836.5 13/8, 21/13
8 956 26/15
9 1075.5 13/7, 28/15
10 1195 2/1
11 1314.5 15/7
12 1434 16/7, 23/10
13 1553.5 22/9, 27/11
14 1673 21/8, 29/11
15 1792.5
16 1912
17 2031.5 29/9
18 2151
19 2270.5 26/7
20 2390
21 2509.5 17/4
22 2629
23 2748.5
24 2868 21/4
25 2987.5 28/5
26 3107 6/1
27 3226.5
28 3346
29 3465.5
30 3585
31 3704.5 17/2
32 3824
33 3943.5
34 4063 21/2
35 4182.5
36 4302 12/1

Harmonics

Approximation of harmonics in 36ed12
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) -5.0 +10.0 -10.0 -37.8 +5.0 -22.9 -15.0 +20.0 -42.9 +31.1 +0.0
Relative (%) -4.2 +8.4 -8.4 -31.7 +4.2 -19.1 -12.6 +16.8 -35.9 +26.1 +0.0
Steps
(reduced)
10
(10)
16
(16)
20
(20)
23
(23)
26
(26)
28
(28)
30
(30)
32
(32)
33
(33)
35
(35)
36
(0)