197ed12

From Xenharmonic Wiki
Jump to navigation Jump to search
← 196ed12 197ed12 198ed12 →
Prime factorization 197 (prime)
Step size 21.8373¢ 
Octave 55\197ed12 (1201.05¢)
Twelfth 87\197ed12 (1899.85¢)
Consistency limit 4
Distinct consistency limit 4

Division of the twelfth harmonic into 197 equal parts (197ED12) is very nearly identical to 55 EDO, but with the 12/1 rather than the 2/1 being just. The octave is about 1.05 cents stretched and the step size is about 21.84 cents.

Theory

This tuning tempers out 81/80 in the 5-limit; 121/120 in the 11-limit; 91/90 and 169/168 in the 13-limit; 154/153 in the 17-limit; 133/132 and 76/75 in the 19-limit; 117/115, 161/160, and 162/161 in the 23-limit; 116/115, 117/116, and 147/145 in the 29-limit; 93/92 and 156/155 in the 31-limit; 111/110 in the 37-limit; 86/85 and 129/128 in the 43-limit; 141/140 in the 47-limit; 123/122 in the 61-limit; 143/142 in the 71-limit; 146/145 and 147/146 in the 73-limit; 166/165 in the 83-limit; 98/97 in the 97-limit; 101/100 in the 101-limit; 103/102 in the 103-limit; 107/106 in the 107-limit; 114/113 in the 113-limit; and 127/125 in the 127-limit.

Harmonics

Approximation of harmonics in 197ed12
Harmonic 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Error Absolute (¢) +1.05 -2.11 +2.11 +8.87 -1.05 -5.88 +3.16 -4.21 +9.92 -2.22 +0.00 -7.55 -4.82 +6.76 +4.21
Relative (%) +4.8 -9.6 +9.6 +40.6 -4.8 -26.9 +14.5 -19.3 +45.4 -10.2 +0.0 -34.6 -22.1 +30.9 +19.3
Steps
(reduced)
55
(55)
87
(87)
110
(110)
128
(128)
142
(142)
154
(154)
165
(165)
174
(174)
183
(183)
190
(190)
197
(0)
203
(6)
209
(12)
215
(18)
220
(23)